Thromb Haemost 1995; 74(05): 1280-1285
DOI: 10.1055/s-0038-1649927
Original Article
Coagulation
Schattauer GmbH Stuttgart

Venous Antithrombotic and Anticoagulant Activities of a Fucoïdan Fraction

Sandrine Mauray
1   The Laboratoire d’hématologie, Hôpital Necker-Enfants Malades, Paris
,
Claude Sternberg
1   The Laboratoire d’hématologie, Hôpital Necker-Enfants Malades, Paris
,
Jocelyne Theveniaux
2   The Laboratoire Fournier, Dijon, France
,
Jean Millet
2   The Laboratoire Fournier, Dijon, France
,
Corinne Sinquin
3   The IFREMER, Nantes, France
,
Jacqueline Tapon-Bretaudiére
1   The Laboratoire d’hématologie, Hôpital Necker-Enfants Malades, Paris
,
Anne-Marie Fischer
1   The Laboratoire d’hématologie, Hôpital Necker-Enfants Malades, Paris
› Author Affiliations
Further Information

Publication History

Received 14 April 1995

Accepted after resubmission 31 July 1995

Publication Date:
10 July 2018 (online)

Summary

Fucoïdans catalyse thrombin inhibition by antithrombin (AT) and heparin cofactor II (HCII); their affinity for each serpin varies according to the seaweed species from which they are extracted, as well as their chemical composition and molecular weight. We extracted a homogeneous fucoïdan fraction from Ascophyllum nodosum, a brown seaweed, and tested its anticoagulant and antithrombotic activities. At a fucoïdan concentration of 3.75 µg/ml, thrombin inhibition mediated by AT showed an apparent second-order rate constant (kapp) of 2 × 108 M-1 min-1, compared to 1.5 × 106 M-1 min-1 for the uncatalyzed reaction. The kapp value of thrombin inhibition via HCII was 1.17 × 109 M-1 min-1 at a fucoïdan concentration of 50 µg/ml, compared to 1.72 × 105 M-1 min-1 for the uncatalyzed reaction. In a Wessler model of venous thrombosis, the fucoïdan fraction, injected intravenously to rabbits 10 min before thrombosis induction, exhibited antithrombotic activity: 1.8 mg/kg was the dose which inhibited F Xa-induced thrombus formation by 80% (ED80), compared to a heparin ED80 of 0.1 mg/kg. At this ED80 the antithrombotic effect of the fucoïdan persisted longer than that of heparin (30 min versus 15 min). The thrombin clotting time (TCT) was significantly prolonged (73 s versus control 29 s, compared to 53 s with heparin) 10 min after a fucoïdan bolus infusion giving a plasma fucoïdan concentration of 14.6 ± 2.7 µg/ml. The bleeding time was slightly increased after fucoïdan infusion at the ED80. Fucoïdan extracted from marine flora thus shows promise as an antithrombotic drug.

 
  • References

  • 1 Kloareg B, Demarty M, Mabeau S. Poly anionic characteristics of purified sulphated homofucans from brown algae. Int J Biol Macromol 1986; 8: 380-386
  • 2 Kloareg B, Quatrano RS. Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Annu Rev 1988; 26: 259-315
  • 3 Boisson-Vidal C, Colliec-Jouault S, Fischer AM, Tapon-Bretaudiere J, Sternberg C, Durand P, Jozefonvicz J. Biological activities of fucans extracted from brown seaweeds. Drugs of the Future 1991; 16: 539-545
  • 4 McLellan DS, Jurd KM. Anticoagulants from marine algae. Blood Coagulation and Fibrinolysis 1992; 3: 69-77
  • 5 Patankar MS, Oehninger S, Barnett T, Williams RL, Clark GF. A revised structure for fucoidan may explain some of its biological activities. J Biol Chem 1993; 268: 21770-21776
  • 6 Springer GF, Wurzel HA, McCneal GM, Anselin J, Doughty MF. Isolation of anticoagulant fractions from crude fucoidan. Proc Soc Exp Biol Med 1957; 94: 404-408
  • 7 Grauffel V, Kloareg B, Mabeau S, Durand P, Jozefonvicz J. New natural polysaccharides with potent antithrombotic activity: fucans from brown algae. Biomaterials 1989; 10: 363-368
  • 8 Nishino T, Aizu Y, Nagumo T. Antithrombin activity of a fucan sulfate from the brown seaweed Ecklonia kurome. Thromb Res 1991; 62: 765-773
  • 9 Church FC, Meade JB, Treanor RE, Whinna HC. Antithrombin activity of fucoidan. The interaction of fucoidan with heparin cofactor II, antithrombin III, and thrombin J Biol Chem 1989; 264: 3618-3623
  • 10 Colliec S, Fischer AM, Tapon-Bretaudière J, Boisson C, Durand P, Jozefonvicz J. Anticoagulant properties of a fucoidan fraction. Thromb Res 1991; 64: 143-154
  • 11 Björk I, Olson ST, Shore JD. Molecular mechanisms of the accelerating effect of heparin on the reactions between antithrombin and clotting proteinases. In: Heparin. Chemical and Biological Properties Clinical Applications. Lane DA, Lindahl D. eds Boca Raton, Llorida: CKO Press Inc; 1989. pp 229-255
  • 12 Colliee S, Tapon-Brctaudière J, Durand P, Fischer AM, Jozefonviez J, Kloareg B, Boisson C. Polysaccharides sulfates, agent anticoagulant el agentantieomplèmenlaire obtains à partir de fucanes d’algues brunes et leur proet’de d’obtention. French Patent nº89 07857 1989
  • 13 Dupouy D, Siè P, Dol b, Boneu B. A simple method to measure dermatan sulfate at submicrogram concentration in plasma. Tliromb Haemost 1988; 60: 230-239
  • 14 Wessler S, Morris LL. Studies on intravascular coagulation IV. The effect ofheparin and Dicoumarol on serum-induced venous thrombosis Circulation 1955; 12: 553-556
  • 15 Wessler S, Reimer SM, Sheps MC. Biologic assay of a thrombosis inducing activity in human serum. J Appl Physiol 1959; 14: 943-946
  • 16 Millet J, Theveniaux J, Brown NL. The venous antithrombotic effect of LF 1351 in the rat following oral administration. Thromb Hacmost 1992; 67: 176-179
  • 17 Carter CJ, Kelton JG, Hirsh J. Comparison of the haemorrhagic effects of porcine and bovine heparin in the rabbits. Thromb Res 1979; 15: 581-586
  • 18 Doutremepuieh C, Toulemonde F, Bousquet F, Bonini F. Comparison of haemorrhagic effect of unfractionated heparin and a low molecular weight heparin fraction (CY 216) in rabbits. Thromb Res 1986; 43: 691-695
  • 19 Tollefsen DM. Heparin cofactor II. In: Heparin. Chemical and Biological Properties Clinical Applications. Lane DA, Lindahl U. (eds) Boca Raton, Florida: CRC Press Inc; 1989. pp 257-273
  • 20 Soeda S, Sakaguchi S, Shimeno H, Nagamatsu A. Fibrinolytic and anticoagulant activities of highly sulfated fueoidan. Bioehem Pharmacol 1992; 43: 1853-1858
  • 21 Remind S, Godu j. Induction of large thrombi in hyperlipemie rats epinephrine and endotoxin. Lab Invest 1969; 21: 512-518
  • 22 Hladovee J. Antithrombotic drugs in thrombosis models:. Hadovec J. ed Boca Raton, Florida: CRC Press; 1989. pp 39-74
  • 23 Millet J, Theveniaux J, Vaillot M, Dorola D. Antithrombotic potential of heparins assessed indirectly by a Wessler technique. Thromb Haemost 1993; 69: 2033 (abstract)
  • 24 Millet J, Theveniaux J, Pascal M. A new experimental model of venous thrombosis in rat involving partial stasis and slight endothelial alteration. Thromb Res 1987; 45: 123-133
  • 25 Farced J, Walenga JM, Kumar A, Rock A. A modified stasis thrombosis model to study the antithrombotic actions of heparin and its fractions. Semin Thromb Hemost 1985; 2: 155-175
  • 26 Hoppenstcadt D, Walenga J, Farced J. Comparative antithrombotic and hemorrhagic effects of dermatan sulfate, heparan sulfate and heparin. Thromb Res 1990; 60: 191-200
  • 27 Fernandez F, Van Ryn J, Ofosu F, Hirsh J, Buchanan MR. The haemorrhagic and antithrombotic effects of dermatan sulphate. Br J Haematol 1986; 64: 309-317