Thromb Haemost 1995; 74(06): 1521-1527
DOI: 10.1055/s-0038-1649976
Original Articles
Fibrinolysis
Schattauer GmbH Stuttgart

Peripheral Blood Monocyte Synthesis of Plasminogen Activator Inhibitor 2 in Response to Native and Modified LDL

Helen Ritchie
1   The Department of Molecular and Cell Biology, University of Aberdeen, Aberdeen, UK
,
Alec Jamieson
2   The Vascular Inflammatory Musculoskeletal Research Department, ZENECA Pharmaceuticals, Macclesfield, UK
,
Nuala A Booth
1   The Department of Molecular and Cell Biology, University of Aberdeen, Aberdeen, UK
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 05. April 1995

Accepted after resubmission 29. August 1995

Publikationsdatum:
10. Juli 2018 (online)

Summary

Fibrin deposition is a characteristic feature of the atherosclerotic plaque. The balance of fibrinolytic activity is modulated by plasminogen activators (PAs) and plasminogen activator inhibitors (PAIs). We examined expression of components of the fibrinolytic system by peripheral blood monocytes following stimulation by native LDL and LDL modified by acetylation, copper oxidation or minimal modification. Monocytes responded to LDL stimulation by increased production of PAI-2, with no corresponding increase in u-PA. PAI-1 was detected but did not change relative to untreated control; u-PA was undetectable in all samples. Native LDL consistently upregulated PAI-2; this stimulation was not inhibited by inclusion of antioxidants. Acetylated, copper oxidized and minimally modified LDLs increased production of PAI-2, but the ability to stimulate PAI-2 synthesis varied between preparations of modified LDL. Increased levels of PAI-2 in a local environment such as the artery wall may promote fibrin persistence.

 
  • References

  • 1 Collen D, Juhan-Vague I. Fibrinolysis and atherosclerosis. Sem Thromb Haemost 1988; 14: 180-183
  • 2 Rapaport SI, Rao LV M. Initiation and regulation of tissue factor-dependent blood coagulation. Arterioscler Thromb 1994; 14: 1111-1121
  • 3 Vassalli JD, Dayer JM, Wohlwend A, Belin D. Concomitant secretion of prourokinase and of a plasminogen activator-specific inhibitor by cultured human monocytes-macrophages. J Exp Med 1984; 159: 1653-1658
  • 4 Hart PH, Vitti GF, Burgess DR, Singleton DK, Hamilton JA. Human monocytes can produce tissue-type plasminogen activator. J Exp Med 1989; 169: 1509-1515
  • 5 Castellote JC, Grau E, Linde MA, Pujol-Moix N, Rutllant ML. Detection of both type 1 and type 2 plasminogen activator inhibitors in human monocytes. Thromb Haemost 1990; 63: 67-71
  • 6 Schwartz BS, Monroe MC, Levin EG. Increased release of plasminogen activator inhibitor type 2 accompanies mononuclear cell tissue factor response to lipopolysaccharide. Blood 1988; 71: 734-741
  • 7 Schwartz BS, Bradshaw JD. Differential regulation of tissue factor and plasminogen activator inhibitor by human mononuclear cells. Blood 1989; 74: 1644-1650
  • 8 Saksela O, Hovi T, Vaheri A. Urokinase-type plasminogen activator and its inhibitor secreted by cultured human monocyte-macrophages. J Cell Physiol 1985; 122: 125-132
  • 9 Genton C, Kruithof EK O, Schleuning W-D. Phorbol ester induces the biosynthesis of glycosylated and nonglycosylated plasminogen activator inhibitor 2 in high excess over urokinase-type plasminogen activator in human U-937 lymphoma cells. J Cell Biol 1987; 104: 705-712
  • 10 Ye RD, Wun T-C, Sadler JE. Mammalian protein secretion without signal peptide removal. J Biol Chem 1988; 263: 4869-4875
  • 11 Belin D, Wohlwend A, Schleuning W-D, Kruithof EK O, Vassalli J-D. Facultative polypeptide translocation allows a single mRNA to encode the secreted and cytosolic forms of plasminogen activator inhibitor 2. EMBO J 1989; 8: 3287-3294
  • 12 Medcalf RL, Kruithof EK O, Schleuning W-D. Plasminogen activator inhibitor 1 and 2 are tumor necrosis factor/cachectin-responsive genes. J Exp Med 1988; 168: 751-759
  • 13 Medcalf RL, Van der Berg E, Schleuning W-D. Glucocorticoid-modulated gene expression of tissue- and urinary-type plasminogen activator and plasminogen activator inhibitor 1 and 2. J Cell Biol 1988; 106: 971-978
  • 14 Gyetko MR, Shollenberger SB, Sitrin RG. Urokinase expression in mononuclear phagocytes: cytokine-specific modulation by interferon-γ and tumor necrosis factor-α. J Leuk Biol 1992; 51: 256-263
  • 15 Hamilton JA, Whitty GA, Last K, Royston AK, Hart PH, Burgess DR. Interleukin-4 suppresses plasminogen activator inhibitor-2 formation in stimulated human monocytes. Blood 1992; 80: 121-125
  • 16 Hamilton JA, Whitty GA, Stanton H, Wojta J, Gallichio M, McGrath K, Ianches G. Macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor stimulate the synthesis of plasminogen- activator inhibitor by human monocytes. Blood 1993; 82: 3616-3621
  • 17 Ross R. The pathogenesis of atherosclerosis. N Engl J Med 1986; 314: 488-499
  • 18 Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 1979; 76: 333-337
  • 19 Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, Gerrity R, Schwartz CJ, Fogelman AM. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 1990; 87: 5134-5138
  • 20 Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman AM, Lusis AJ. Induction of endothelial cell expression of granulocyte and macrophage colony stimulating factors by modified low-density lipoproteins. Nature 1990; 344: 254-257
  • 21 Quinn MT, Parthasarathy S, Fong LG, Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci USA 1987; 84: 2995-2998
  • 22 Schuff-Wemer P, Claus G, Armstrong VW, Kostering H, Seidel D. Enhanced procoagulatory activity (PCA) of human monocytes/macro- phages after in vitro stimulation with chemically modified LDL. Atherosclerosis 1989; 78: 109-112
  • 23 Drake TA, Hannani K, Fei H, Lavi S, Berliner JA. Minimally oxidized low-density lipoprotein induces tissue factor expression in cultured human endothelial cells. Am J Path 1991; 138: 601-607
  • 24 Weis JR, Pitas RE, Wilson BD, Rodgers GM. Oxidized low-density lipoprotein increases cultured human endothelial cell tissue factor activity and reduces protein C activation. FASEB J 1991; 5: 2459-2465
  • 25 Tremoli E, Camera M, Madema P, Sironi L, Prati L, Colli S, Piovella F, Bernini F, Corsini A, Mussoni L. Increased synthesis of plasminogen activator inhibitor-1 by cultured human endothelial cells exposed to native and modified LDLs. Arterioscler Thromb 1993; 13: 338-346
  • 26 Kaneko T, Wada H, Wakita Y, Minamikawa K, Nakese T, Mori Y, Deguchi K, Shirakawa S. Enhanced tissue factor activity and plasminogen activator inhibitor-1 antigen in human umbilical vein endothelial cells incubated with lipoproteins. Blood Coag Fibrin 1994; 5: 385-392
  • 27 Levin EG, Miles LA, Fless GM, Scanu AM, Baynham P, Curtiss LK, Plow EF. Lipoproteins inhibit the secretion of tissue plasminogen activator from human endothelial cells. Arterioscler Thromb 1994; 14: 438-442
  • 28 Basu SK, Goldstein JL, Anderson RG W, Brown MS. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemic fibroblasts. Proc Natl Acad Sci USA 1976; 73: 3178-3172
  • 29 Parhami F, Fang ZT, Fogelman AM, Andalibi A, Territo MC, Berliner JA. Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate. J Clin Invest 1993; 92: 471-478
  • 30 Noble RP. Electrophoretic separation of plasma lipoproteins in agarose gel. J Lipid Research 1968; 9: 693-700
  • 31 Corongiu FP, Milia A. An improved and simple method for determining conjugation in autoxidized polyunsaturated fatty acids. Chem Biol Interact 1983; 44: 289-297
  • 32 Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principles of protein-dye binding. Anal Biochem 1976; 72: 248-254
  • 33 Tucker SB, Pierre RV, Jordon RE. Rapid identification of monocytes in a mixed mononuclear cell preparation. J Immuno Meth 1977; 14: 267-269
  • 34 MacGregor IR, Booth NA. An enzyme-linked immunosorbent assay to study the cellular secretion of endothelial plasminogen activator inhibitor (PAI-1). Thromb Haemost 1988; 59: 68-72
  • 35 Ritchie H, Jamieson A, Booth NA. Thrombin modulates synthesis of plasminogen activator inhibitor type 2 by human peripheral blood monocytes. Blood. in press
  • 36 Booth NA, Anderson JA, Bennett B. Plasminogen activators in alcoholic cirrhosis: demonstration of increased tissue type and urokinase type activators. J Clin Path 1984; 37: 772-777
  • 37 Chomezynski P, Sacchi N. Single step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156-159
  • 38 Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning – a laboratory manual. 2nd edition. Cold Spring Harbor Press; 1991. pp 7.40-7.42
  • 39 Stevens J, Cottingham IR, Chinery SA, Goodey AR, Courtney M, Ballance DJ. Purification and characterization of plasminogen activator inhibitor 2 produced in Saccharomyces cerevisiae. Eur J Biochem 1991; 196: 431-438
  • 40 Erickson JL, Rushford CL, Dolney DJ, Wilson GN, Schmickel RD. Structure and variation of human ribosomal DNA: molecular analysis of cloned fragments. Gene 1981; 16: 1-9
  • 41 Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ. Structure and function of lipopolysaccharide binding protein. Science 1990; 249: 1429-1431
  • 42 Brand K, Banka CL, Mackman N, Terkeltaub RA, Fan S-T, Curtiss LK. Oxidised LDL enhances lipopolysaccharide-induced tissue factor expression in human adherent monocytes. Arterioscler Thromb 1994; 14: 790-797
  • 43 Parthasarathy S, Printz DJ, Boyd D, Joy L, Steinberg D. Macrophage oxidation of low density lipoprotein generates a modified form recognized by the scavenger receptor. Arteriosclerosis 1986; 5: 505-510
  • 44 Brown MS, Goldstein JL. Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis. Ann Rev Biochem 1983; 52: 223-261
  • 45 Falcone DJ, Ferenc MJ. Acetyl-LDL stimulates macrophage-dependent plasminogen activation and degradation of extracellular matrix. J Cell Physiol 1988; 135: 387-396
  • 46 Kreiger M, Herz J. Structures and functions of multiligand lipoprotein receptors. Ann Rev Biochem 1994; 63: 601-637
  • 47 Naito M, Suzuki H, Mori T, Matsumoto A, Kodama T, Takahahsi K. Coexpression of type I and type II human macrophage scavenger receptors in macrophages of various organs and loam cells on atherosclerotic lesions. Am J Path 1992; 141: 591-599
  • 48 Geng Y-J, Kodama T, Hansson GK. Differential expression of scavenger receptor isoforms during monocyte-macrophage differentiation and foam cell formation. Arterioseler Thromb 1994; 14: 798-806
  • 49 Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 1993; 268: 11811-11816
  • 50 Parthasarathy S, Rankin SM. Role of oxidized low density lipoprotein in atherogenesis. Prog Lipid Res 1992; 31: 127-143
  • 51 Yla-Herttuala S, Rosenfeld ME, Parthasarathy S, Glass CK, Sigal L, Witz-tum JT, Steinberg D. Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc Natl Acad Sci USA 1990; 87: 6969-6965
  • 52 Sparrow CP, Parthsarathy S, Steinberg D. Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2mimics cell-mediated oxidative modification. J Lipid Research 1988; 29: 745-753
  • 53 Reid VC, Mitchison MJ. Toxicity of oxidized low density lipoprotein towards mouse peritoneal macrophages in vitro. Arterioseler 1993; 98: 17-24
  • 54 Wilcox JN, Smith KM, Schwartz SM, Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 1989; 86: 2839-2843
  • 55 Lupu F, Bergonzelli GE, Heim DA, Cousin E, Genton CY, Bachmann F, Kruithof EK O. Localization and production of plasminogen activator inhibitor-1 in human healthy and atherosclerotic arteries. Arterioseler Thromb 1993; 13: 1090-1100
  • 56 Schneidermann J, Sawdey MS, Keeton MR, Bordin GM, Bernstein EF, Dilley RB, Loskutoff D. Increased type l plasminogen activator inhibitor gene expression in atherosclerotic arteries. Proc Natl Acad Sci USA 1992; 89: 6998-7002
  • 57 Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994; 94: 2493-2503
  • 58 Galis ZS, Sukhova GK, Kranzhofer R, Clark S, Libby P. Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci USA 1995; 92: 402-406
  • 59 Kaartinen M, Penttila A, Kovanen PT. Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of atheromatous rupture. Circulation 1994; 90: 1669-1678
  • 60 Ellis V, Wun T-C, Behrendt N, Rønne L, Danø K. Inhibition of receptor-bound urokinase by plasminogen-activator inhibitors. J Biol Chem 1990; 265: 9904-9908
  • 61 Whawell SA, Vipond MN, Scott-Combes DM, Thompson JN. Plasminogen activator inhibitor 2 reduces peritoneal activity in inflammation. Br J Surg 1993; 80: 107-109
  • 62 Kumar S, Baglioni C. Protection from tumor necrosis factor-mediated cyto-lysis by overexpression of plasminogen activator inhibitor type-2. J Biol Chem 1991; 266: 20960-20964
  • 63 Jensen PH, Cressey LI, Gjertsen BT, Madsen P, Mellgren G, Hokland P, Gliemann J, Doskeland SO, Lanotte M, Vintermyr OK. Cleaved intracellular plasminogen activator inhibitor 2 in human myeloleukaemia cells is a marker of apoptosis. Br J Cancer 1994; 70: 834-840