RSS-Feed abonnieren
DOI: 10.1055/s-0038-1650234
Quantitative Comparison of Fibrin Degradation with Plasmin, Miniplasmin, Neurophil Leukocyte Elastase and Cathepsin G
Publikationsverlauf
Received 08. Juli 1995
Accepted after revision 13. September 1995
Publikationsdatum:
10. Juli 2018 (online)
Summary
The relative contribution of plasmin, miniplasmin, PMN-elastase and cathepsin G to the fibrin-gel dissolution is studied. The global kcat/KM ratios are determined as a measure of the fibrinolytic catalytic efficiency using spectrophotometric kinetic analysis of the competition between fibrin and synthetic peptide substrates for the proteases, turbi-dimetric assay for fibrin dissolution and gel-filtration of the partially degraded fibrin. When the substrate is fibrin polymerized in the presence of 3 mM Ca2+, the value of this ratio is 4.3 × 105 M-1·s-1 for plasmin, 1.9 × 105 M-1·s-1 for miniplasmin, 5.0 × 104 M-1·s-1 for PMN-elastase and 2.2 × 103 M-1·s-1 for cathepsin G. When fibrin is polymerized without addition of Ca2+, the kcat/KM values are increased by a factor of 2.3 for plasmin, 2.0 for miniplasmin and 1.6 for cathepsin G, whereas that of PMN-elastase is unchanged. Progressive crosslinking of fibrin decreases the catalytic action of all studied proteases, but no change in their relative contribution to fibrinolysis is observed. When plasmin inhibitor (at physiological concentration) is also crosslinked to fibrin, the most efficient fibrinolytic enzymes are miniplasmin and PMN-elastase. The effect of 6-aminohexanoate on the formation of fibrin degradation products by plasmin and miniplasmin suggests that the high-affinity lysine binding site in the N-terminal kringle domain of plasmin is involved in the interactions with the native polymerized fibrin, whereas the fifth kringle found in both enzymes participates in binding to newly exposed lysine residues. These results provide a quantitative basis for the evaluation of fibrinolytic efficiency and support the concept of synergistic fibrinolysis.
-
References
- 1 Bachmann F. Fibrinolysis. In: Thrombosis and Haemostasis Verstraete M, Vermylen J, Lijnen HR, Amout J. eds Leuven University Press; Leuven: 1987. pp 227-265
- 2 Zahn FW. Untersuchungen über Thrombose. Bildung der Thromben. Virchow’s Arch Path Anat 1875; 62: 082-132
- 3 Opie EL. Experimental pleurisy. J Exp Med 1907; 9: 391-413
- 4 Plow EF. The major fibrinolytic proteases of human leukocytes. Biochim Biophys Acta 1980; 630: 47-56
- 5 Machovich R, Owen WG. The elastase-mediated pathway of fibrinolysis. Blood Coagul Fibrinolysis 1990; 1: 79-90
- 6 Niewiarowski S, Regoeczi E, Mustard JF. Platelet interaction with fibrinogen and fibrin: comparison of the interaction of platelets with that of fibroblasts, leukocytes and erythrocytes. Ann NY Acad Sci 1972; 201: 72-83
- 7 Loike JD, Sodeik B, Cao L, Leucona S, Weitz JI, Detmers PA, Wright SD, Silverstein SC. CD 11 c/CD 18 on neutrophils recognizes a domain at the N terminus of the Aa chain of fibrinogen. Proc Natl Acad Sci USA 1991; 88: 1044-1048
- 8 Machovich R, Owen WG. An elastase-dependent pathway of plasminogen activation. Biochemistry 1989; 28: 4517-4522
- 9 Machovich R, Himer A, Owen WG. Neutrophil proteases in plasminogen activation. Blood Coagul Fibrinolysis 1990; 1: 273-277
- 10 Markus G, DePasquale JL, Wissler FC. Quantitative determination of the binding of e-aminocaproic acid to native plasminogen. J Biol Chem 1978; 253: 733-739
- 11 Menhart N, McCance SG, Sehl LC, Castellino FJ. Functional independence of the kringle 4 and kringle 5 regions of human plasminogen. Biochemistry 1993; 32: 8799-8806
- 12 Christensen U. The AH-site of plasminogen and two C-terminal fragments. A weak lysine-binding site preferring ligands not carrying a free carboxy-late function. Biochem J 1984; 223: 413-421
- 13 Wu HL, Chang BI, Wu DH, Chang LC, Gong CC, Lou KL, Shi GY. Interaction of plasminogen and fibrin in plasminogen activation. J Biol Chem 1990; 265: 19658-19664
- 14 Plow EF, Gramse M, Havemann K. Immunochemical discrimination of leukocyte elastase from plasmic degradation products of fibrinogen. J Lab Clin Med 1983; 102: 858-869
- 15 Morris JP, Blatt S, Powell JR, Strickland DK, Castellino FJ. Role of lysine binding regions in the kinetic properties of human plasmin. Biochemistry 1981; 20: 4811-4816
- 16 Ney KA, Pizzo SV. Fibrinolysis and fibrinogenolysis by Val442-plasmin. Biochim Biophys Acta 1982; 708: 218-224
- 17 Suenson E, Bjerrum P, Holm A, Lind B, Melda M, Selmer J, Petersen LC. The role of fragment X polymers in the fibrin enhancement of tissue plasminogen activator-catalyzed plasmin formation. J Biol Chem 1990; 265: 22228-22237
- 18 McKee PA, Mattock P, Hill RL. Subunit structure of human fibrinogen, soluble fibrin, and cross-linked insoluble fibrin. Proc Natl Acad Sci USA 1970; 66: 738-744
- 19 McDonagh RP, McDonagh J, Duckert F. The influence of fibrin crosslinking on the kinetics of urokinase-induced clot lysis. Br J Haematol 1971; 21: 323-332
- 20 Carmassi F, Cardinali M, Bianchi R, Chung SI. Influence of factor XIII-mediated crosslinking on fibrinolysis by leukocyte elastase. Fibrinolysis 1991; 3: 45-52
- 21 Edwards MW, de Bang E, Strout J, Bishop PD. Recombinant factor XIII supplemented clots resist lysis by plasmin and leukocyte elastase. Fibrinolysis 1993; 7: 211-216
- 22 Purves LR, Lindsey GG, Brown G, Franks J. Stabilization of the plasmin digestion products of fibrinogen and fibrin by calcium ions. Thromb Res 1978; 12: 473-484
- 23 Nieuwenhuizen W, Voskuilen M, Vermond A, Haverkate F, Hermans J. A fibrinogen fragment D (D intermediate) with calcium binding but without anticlotting properties. Biochim Biophys Acta 1982; 707: 190-192
- 24 Sakata Y, Aoki N. Cross-linking of α2-plasmin inhibitor to fibrin by fibrin-stabilizing factor. J Clin Invest 1980; 65: 290-297
- 25 Reed III GL, Matsueda GR, Haber E. Synergistic fibrinolysis: combined effects of plasminogen activators and antibody that inhibits alpha 2-antiplas-min. Proc Natl Acad Sci USA 1990; 87: 1114-1118
- 26 Brower MS, Harpel P. Proteolytic cleavage and inactivation of α2-plasmin inhibitor and Ct-inactivator by human polymorphonuclear leukocyte elastase. J Biol Chem 1982; 257: 9849-9854
- 27 Shieh BH, Travis J. The reactive site of human α2-antiplasmin. J Biol Chem 1987; 262: 6055-6059
- 28 Deutsch DG, Mertz ET. Plasminogen: purification from human plasma by affinity chromatography. Science 1970; 170: 1095-1096
- 29 Kolev K, Léránt I, Tenekejiev K, Machovich R. Regulation of fibrinolytic activity of neutrophil leukocyte elastase, plasmin and miniplasmin by plasma protease inhibitors. J Biol Chem 1994; 269: 17030-17034
- 30 Nakajima K, Powers JC. Mapping the extended substrate binding site of cathepsin G and human leukocyte elastase. Studies with peptide substrates related to the α1-protease inhibitor reactive site. J Biol Chem 1979; 254: 4027-4032
- 31 Schwartz ML, Pizzo SV, Hill RL, McKee PA. The effect of fibrin-stabilizing factor on the subunit structure of human fibrin. J Clin Invest 1971; 50: 1506-1513
- 32 Segel LA. On the validity of the steady state assumption of enzyme kinetics. Bull Mathem Biol 1988; 50: 579-593
- 33 De Cristofaro R, Di Cera E. Modulation of thrombin-fibrinogen interaction by specific ion effects. Biochemistry 1992; 31: 257-265
- 34 Carr ME, Gabriel DA. The effect of dextran 70 on the structure of plasma-derived fibrin gels. J Lab Clin Med 1980; 96: 985-993
- 35 Jones AJS, Meunier AM. A precise and rapid microtitre plate clot lysis assay: Methodology, kinetic modeling and measurement of catalytic constants for plasminogen activation during fibrinolysi. Thromb Haemost 1990; 64: 455-463
- 36 Carr ME, Powers PL, Jones MR. Effects of Poloxamer 188 on the assembly, structure and dissolution of fibrin clots. Thromb Haemost 1991; 66: 565-568
- 37 Nishino N, Kakkar VV, Scully MF. Influence of intrinsic and extrinsic plasminogen upon the lysis of thrombi in vitro. Thromb Haemost 1991; 66: 672-677
- 38 Carr ME, Krishnamurti C, Alving BM. Effect of plasminogen activator inhibitor-1 on tissue-type plasminogen activator-induced fibrinolysis. Thromb Haemost 1992; 67: 106-110
- 39 Gaffney PJ. The fibrinolytic system. In: Haemostasis and Thrombosis Bloom AL, Thomas DP. eds Churchill Livingstone; NY: 1981. pp 198-224
- 40 Pizzo SV, Schwartz ML, Hill RL, McKee PA. The effect of plasmin on the subunit structure of human fibrinogen. J Biol Chem 1972; 247: 636-645
- 41 Pizzo SV, Schwartz ML, Hill RL, McKee PA. The effect of plasmin on the subunit structure of human fibrin. J Biol Chem 1973; 248: 4574-4583
- 42 Shen LL, McDonagh RP, Hermans J. Early events in the plasmin digestion of fibrinogen and fibrin. Effects on fibrin polymerization. J Biol Chem 1977; 252: 6184-6189
- 43 Liu CY, Sobel JH, Weitz JI, Kaplan KL, Nossel HL. Immunologic identification of the cleavage products from the Aα- and Bβ-chains in the early stages of plasmin digestion of fibrinogen. Thromb Haemost 1986; 56: 100-106
- 44 Müller E, Henschen A. Isolation and characterization of early plasmic degradation products of fibrinogen by high-performance liquid chromatography. In: Fibrinogen and Its Derivatives Müller-Berghaus G, Scheefers-Borchel U, Selmayer E, Henschen A. eds Excerpta Medica; Amsterdam: 1986. pp 327-330
- 45 Weitz JI, Landman SL, Crowley KA, Birken S, Morgan FJ. Development of an assay for in vivo neutrophil elastase activity. Increased elastase activity in patients with α1proteinase inhibitor deficiency. J Clin Invest 1986; 78: 155-162
- 46 Gramse M, Bingenheimer C, Havemann K. Degradation of human fibrinogen by chymotrypsin-like neutral protease from human granulocytes. Thromb Res 1980; 19: 201-209
- 47 Kolev K, Komorowicz E, Machovich R. Heparin modulation of the fibrinolytic activity of plasmin, miniplasmin and neutrophil leukocyte elastase in the presence of plasma protease inhibitors. Blood Coagul Fibrinolysis 1994; 5: 905-911