Thromb Haemost 1996; 75(06): 887-891
DOI: 10.1055/s-0038-1650389
Scientific and Standardization Committee Communications
Schattauer GmbH Stuttgart

Fibrinogen Matsumoto I: A γ364 Asp → His (GAT→CAT) Substitution Associated with Defective Fibrin Polymerization

Nobuo Okumura
1   The Division of Clinical Chemistry and Medical Technology, School of Allied Medical Sciences, Shinshu University, Matsumoto, Nagano, Japan
,
Kenichi Furihata
2   The Dept. of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
,
Fumiko Terasawa
1   The Division of Clinical Chemistry and Medical Technology, School of Allied Medical Sciences, Shinshu University, Matsumoto, Nagano, Japan
,
Ritsuko Nakagoshi
3   Central Clinical Laboratory, Shinshu University Hospital, Matsumoto, Nagano, Japan
,
Ichiro Ueno
3   Central Clinical Laboratory, Shinshu University Hospital, Matsumoto, Nagano, Japan
,
Tsutomu Katsuyama
2   The Dept. of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
› Author Affiliations
Further Information

Publication History

Received 30 August 1995

Accepted after resubmission 21 February 1996

Publication Date:
11 July 2018 (online)

Summary

Fibrinogen Matsumoto I is a novel hereditary dysfibrinogen identified in a 1-year-old boy with Down’s syndrome. Though he showed no apparent bleeding or thrombotic tendency, he had a congenital heart disease. Preoperative coagulation tests of his plasma revealed a prolonged thrombin time and the fibrinogen level determined by the thrombin time method was markedly decreased. Molecular weight of fibrinogen chains showed apparently normal Aα, Bβ-, and γ-chains. The rate of fibrinopeptide release was normal, whereas fibrin polymerization was delayed. Fibrinogen γ-chain gene fragments from the propositus were amplified by polymerase chain reaction then sequenced. The triplet GAT, coding for the amino acid residue γ364, was replaced by CAT, resulting in the substitution of Asp→His. This residue is adjacent to the Tyr-363 that is demonstrated to be the primary site for fibrin polymerization. Our results indicate that the residue γ364 Asp is essential for normal polymerization of fibrin monomer.

 
  • References

  • 1 Olexa SA, Budzynski AZ. Evidence for four different polymerization sites involved in human fibrin formation. Proc Natl Acad Sci USA 1980; 77: 1374-1378
  • 2 Shimizu A, Nagel GM, Doolittle RF. Photoaffinity labeling of the primary fibrin polymerization site: Isolation and characterization of a labeled cyanogen bromide fragment corresponding to γ-chain residues 337-379. Proc Natl Acad Sci USA 1992; 89: 2888-2892
  • 3 Yamazumi K, Doolittle RF. Photoaffinity labeling of the primary fibrin polymerization site: Localization of the label to γ-chain Tyr-363. Proc Natl Acad Sci USA 1992; 89: 2893-2896
  • 4 Chen R, Doolittle RF. γ-γ cross-linking sites in human and bovine fibrin. Biochemistry 1971; 10: 4486-4491
  • 5 Lorand L, Chenoweth D, Gray A. Titration of the acceptor cross-linking sites in fibrin. Ann NY Acad Sci 1972; 202: 155-171
  • 6 Bajt ML, Ginsberg MH, Frelinger III AL, Bemdt MC, Loftus JC. A spontaneous mutation in integrin αIIbβ3 (platelet glycoprotein Ilb-IIIa) helps define a ligand binding site. J Biol Chem 1992; 267: 3789-3794
  • 7 Yonekawa O, Voskuilen M, Nieuwenhuizen W. Localization in the fibrinogen γ-chain of a new site that is involved in the acceleration of the tissue-type plasminogen activator-catalyzed activation of plasminogen. Biochem J 1992; 283: 187-191
  • 8 Matsuda M, Yoshida N, Terukina S, Yamazumi K, Maekawa H. Molecular abnormalities of fibrinogen - the present status of structure elucidation. In: Fibrinogen 4. Current basic and clinical aspects Matsuda M, Iwanaga S, Takada A, Henschen A. eds. Elsevier Science, Amsterdam: 1990: 139-152
  • 9 Reber P, Furlan M, Henschen A, Kaudewitz H, Barbui T, Hilgard P, Nenci GG, Berrettini M, Beck EA. Three abnormal fibrinogen variants with the same amino acid substitution (γ275Arg→His): Fibrinogens Bergamo II, Essen and Perugia. Thromb Haemost 1986; 56: 401-406
  • 10 Yamazumi K, Terukina S. Onohara S, Matsuda M. Normal plasmic cleavage of the y-chain variant of “Fibrinogen Saga” with an Arg-275 to His substitution. Thromb Haemost 1988; 60: 476-480
  • 11 Siebenlist KR, Mosesson MW, Di Orio JP, Tavori S, Tatarsky I, Rimon A. The polymerization of fibrin prepared from fibrinogen Haifa (γ275Arg→His). Thromb Haemost 1989; 62: 875-879
  • 12 Yoshida N, Imaoka S, Hirata H, Matsuda M, Asakura S. Heterozygous abnormal fibrinogen Osaka III with the replacement of γ arginine-275 by histidine has an apparently higher molecular weight γ-chain variant. Thromb Haemost 1992; 68: 534-538
  • 13 Yoshida N, Ota K, Moroi M, Matsuda M. An apparently higher molecular weight γ-chain variant in a new congenital abnormal fibrinogen Tochigi characterized by the replacement of γ arginine-275 by cysteine. Blood 1988; 71: 480-487
  • 14 Terukina S, Matsuda M, Hirata H, Takeda Y, Miyata T, Takao T, Shimoni-shi Y. Substitution of yArg-275 by Cys in an abnormal fibrinogen, “Fibrinogen Osaka II.” Evidence for a unique solitary cystine structure at the mutation site. J Biol Chem 1988; 263: 31579-31587
  • 15 Schmelzer CH, Ebert RF, Bell WR. Fibrinogen Baltimore IV: Congenital dysfibrinogenemia with a γ275 (Arg⟶Cys) substitution. Thromb Res 1989; 56: 307-316
  • 16 Bantia S, Mane SM, Bell WR, Dang CV. Fibrinogen Baltimore I: Polymerization defect associated with a γ292Gly⟶Val (GGC⟶GTC) mutation. Blood 1990; 76: 2279-2283
  • 17 Yoshida N, Terukina S, Okuma M, Moroi M, Aoki N, Matsuda M. Characterization of an apparently lower molecular weight γ-chain variant in fibrinogen Kyoto I. The replacement of γ-asparagine 308 by lysine which causes accelerated cleavage of fragment D, by plasmin and the generation of a new plasmin cleavage site. J Biol Chem 1988; 263: 13848-13856
  • 18 Grailhe P, Boyer-Neumann C, Haverkate F, Grimbergen J, Larrieu MJ, Anglès-Cano E. The mutation in fibrinogen Bicetre II (γAsn308⟶Lys) does not affect the binding of t-PA and plasminogen to fibrin. Blood Coagulation Fibrinolysis 1993; 4: 679-687
  • 19 Bantia S, Bell WR, Dang CV. Polymerization defect of fibrinogen Baltimore III due to a γAsn308⟶Ile mutation. Blood 1990; 75: 1659-1663
  • 20 Yamazumi K, Shimura K, Terukina S, Takahashi N, Matsuda M. A 7 methionine-310 to threonine substitution and consequent N-glycosylation at γ asparagine-308 identified in a congenital dysfibrinogenemia associated with posttraumatic bleeding, fibrinogen Asahi. J Clin Invest 1989; 83: 1590-1597
  • 21 Miyata T, Furukawa K, Iwanaga S, Takamatsu J, Saito H. Fibrinogen Nagoya, a replacement of glutamine-329 by arginine in the γ-chain that impairs the polymerization of fibrin monomer. J Biochem 1989; 105: 10-14
  • 22 Reber P, Furlan M, Rupp C, Kehl M, Henschen A, Mannucci PM, Beck EA. Characterization of fibrinogen Milano I: Amino acid exchange γ330Asp⟶Val impairs fibrin polymerization. Blood 1986; 67: 1751-1756
  • 23 Terukina S, Yamazumi K, Okamoto K, Yamashita H, Ito Y, Matsuda M. Fibrinogen Kyoto III: A congenital dysfibrinogen with a γ aspartic acid-330 to tyrosine substitution manifesting impaired fibrin monomer polymerization. Blood 1989; 74: 2681-2687
  • 24 Steinmann C, Reber P, Jungo M, Lämmle B, Heinemann G, Wermuth B, Furlan M. Fibrinogen Bern I: Substitution γ337Asn⟶Lys is responsible for defective fibrin monomer polymerization. Blood 1993; 82: 2104-2108
  • 25 Steinmann C, Bogli C, Jungo M, Lämmle B, Heinemann G, Wermuth B, Redaelli R, Baudo F, Furlan M. A new substitution, γ358 Ser⟶Cys, in fibrinogen Milano VII causes defective fibrin polymerization. Blood 1994; 84: 1874-1880
  • 26 Yoshida N, Hirata H, Morigami Y, Imaoka S, Matsuda M, Yamazumi K, Asakura S. Characterization of an abnormal fibrinogen Osaka V with the replacement of γ-arginine 375 by glycine. The lack of high affinity calcium binding to D-domains and the lack of protective effect of calcium on fibrinolysis J Biol Chem 1992; 267: 2753-2759
  • 27 Koopman J, Haverkate F, Briët E, Lord ST. A congenitally abnormal fibrinogen (Vlissingen) with a 6-base deletion in the γ-chain gene, causing defective calcium binding and impaired fibrin polymerization. J Biol Chem 1991; 266: 13456-13461
  • 28 Rosenberg JB, Newman PJ, Mosesson MW, Guillin M-C, Amrani DL. Paris I dysfibrinogenemia: A point mutation in intron 8 results in insertion of a 15 amino acid sequence in the fibrinogen γ-chain. Thromb Haemost 1993; 69: 217-220
  • 29 Martinez J, Holbum RR, Shapiro SS, Erslev AJ. Fibrinogen Philadelphia. A hereditary hypodysfibrinogenemia characterized by fibrinogen hypercatabolism. J Clin Invest 1974; 53: 600-611
  • 30 Clauss A. Gerinnungsphysiologische Schnellmethode zur Bestimmung des Fibrinogens. Acta Haematol 1957; 17: 237-246
  • 31 Yoshida N, Okuma M, Moroi M, Matsuda M. A lower molecular weight γ-chain variant in a congenital abnormal fibrinogen (Kyoto). Blood 1986; 68: 703-707
  • 32 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680-685
  • 33 Okumura N, Kagiya H, Kumagai T, Kameko M, Tozuka M, Saito H, Kat-suyama T, Kanai M. Analysis of cross-linked fibrin and fibrinogen degradation products with SDS-PAGE and immunoblot. Jap J Clin Pathol 1990; 38: 201-207 (in Japanese)
  • 34 Kehl M, Lottspeich F, Henschen A. Analysis of human fibrinopeptides by high-performance liquid chromatography. Hoppe-Seyler’s Z Physiol Chem 1981; 362: 1661-1664
  • 35 Gralnick HR, Givelber HM, Shainoff JR, Finlayson JS. Fibrinogen Bethes-da: a congenital dysfibrinogenemia with delayed fibrinopeptide release. J Clin Invest 1971; 50: 1819-1830
  • 36 Rixon MW, Chung DW, Davie EW. Nucleotide sequence of the gene for the 7 chain of human fibrinogen. Biochemistry 1985; 24: 2077-2086
  • 37 Gustafson S, Proper JA, Bowie EJW, Sommer SS. Parameters affecting the yield of DNA from human blood. Anal Biochem 1987; 165: 294-299
  • 38 Marchetti L, Zanelli T, Malcovati M, Tenchini ML. Polymorphism of the human gamma chain fibrinogen gene. DNA Sequence 1991; 1: 419-422
  • 39 Blombäck M, Blombäck B, Mammen EF, Prasad AS. Fibrinogen Detroit - a molecular defect in the N-terminal disulphide knot of human fibrinogen?. Nature 1968; 218: 134-137
  • 40 Yoshida N, Okuma M, Hirata H, Matsuda M, Yamazumi K, Asakura S. Fibrinogen Kyoto II, a new congenitally abnormal molecule, characterized by the replacement of Aα proline-18 by leucine. Blood 1991; 78: 149-153
  • 41 Koopman J, Haverkate F, Grimbergen J, Engesser L, Novakova I, Kerst AFJA, Lord ST. Abnormal fibrinogens IJmuiden (BβArg14⟶Cys) and Nijmegen (BβArg44⟶Cys) form disufide-linked fibrinogen-albumin complexes. Proc Natl Acad Sci USA 1992; 89: 3478-3482
  • 42 Kaudewitz H, Henschen A, Soria J, Soria C. Fibrinogen Pontoise - A genetically abnormal fibrinogen with defective fibrin polymerization but normal fibrinopeptide release. In: Fibrinogen, Fibrin formation and fibrinolysis, volume 4 Lane D, Henschen A, Jasani MK. eds Walter de Gruyter; Berlin: 1986: 91-96
  • 43 Dang CV, Ebert RF, Bell WR. Localization of a fibrinogen calcium binding site between γ-subunit positions 311 and 336 by terbium fluorescence. J Biol Chem 1985; 260: 9713-9719