Thromb Haemost 1996; 76(03): 292-301
DOI: 10.1055/s-0038-1650574
Original Article
Schattauer GmbH Stuttgart

A Mutant (Arg327→His) GPIIb Associated to Thrombasthenia Exerts a Dominant Negative Effect in Stably Transfected CHO Cells

Milagros Ferrer
The Department of Pathophysiology and Human Molecular Genetics, Centro de Investigaciones Biologicas (CSIC), Madrid, Spain
,
Marta Fernandez-Pinel
The Department of Pathophysiology and Human Molecular Genetics, Centro de Investigaciones Biologicas (CSIC), Madrid, Spain
,
Consuelo Gonzalez-Manchon
The Department of Pathophysiology and Human Molecular Genetics, Centro de Investigaciones Biologicas (CSIC), Madrid, Spain
,
Jose Gonzalez
1   The Unidad de Bioffsica, Instituto de Qufmica Fisica, CSIC, Madrid, Spain
,
Matilde S Ayuso
The Department of Pathophysiology and Human Molecular Genetics, Centro de Investigaciones Biologicas (CSIC), Madrid, Spain
,
Roberto Parrilla
The Department of Pathophysiology and Human Molecular Genetics, Centro de Investigaciones Biologicas (CSIC), Madrid, Spain
› Author Affiliations
Further Information

Publication History

Received: 09 October 1995

Accepted after resubmission22 May 1996

Publication Date:
26 July 2018 (online)

Summary

This work reports the structural and functional characterization of the platelet glycoprotein complex GPIIb-IIIa (integrin αIIbβ3) in a patient of type II Glanzmann thrombasthenia, bearing a homozygous G→A base transition at position 1074 of GPIIb that results in an Arg327→His substitution.

CHO cells stably transfected with cDNA encoding His327GPIIb showed a drastic reduction in the surface expression of αIIbβ3 complex relative to control cells transfected with wild type GPIIb. Immunopre-cipitation analysis demonstrated that GPIIb synthesis, heterodimeriza-tion, and short term maturation were not impeded, suggesting that conformational changes dependent on Arg327 of GPIIb may play an essential role in either the rate of maturation and/or transport of heterodimers to the cell surface.

Cotransfection of CHO cells with equimolar amounts of cDNAs encoding wild type and mutant His327-GPIIb led to a marked reduction in the surface expression of αIIbβ3. This novel observation of a dominant-negative effect of the mutant His327αIIb subunit provides a molecular basis for the reduced platelet αIIbβ3 content observed in the heterozygous offspring.

 
  • References

  • 1 Phillips DR, Charo IF, Parise LV, Fitzgerald LA. The platelet membrane glycoprotein Ilb-IIIa complex. Blood 1988; 71: 831-843
  • 2 Plow EF, Ginsberg MH. Cellular adhesion: GPIIb-IIIa as a prototypic adhesion receptor. In: Progress in hemostasis and thrombosis. Coller BS (ed). W. B. Saunders, Philadelphia PA 1989: 117-156
  • 3 Smyth SS, Joneckis CC, Parise LV. Regulation of vascular integrins. Blood 1993; 81: 2827-2843
  • 4 Pytela RP, Pierschbacher MD, Ginsberg MH, Plow EF, Ruoslhati E. Platelet membrane glycoprotein Ilb/IIIa: Member of a family of Arg-Gly-Asp-specific adhesion receptors. Science 1986; 231: 1559-1562
  • 5 Ginsberg MH, Loftus JC, Ryckwaert J-J, Pierschbacher MD, Pytela R, Ruoslhati E, Plow EF. Immunochemical and amino-terminal sequence comparison of two cytoadhesins indicates they contain similar or identical alpha subunits and distinct beta subunits. J Biol Chem 1987; 262: 5437-5440
  • 6 Charo IF, Fitzgerald LA, Steiner B, Rail Jr SC, Bekeart LS, Phillips DR. Platelets glycoproteins lib and Ilia: Evidence for a family of immunologically and structurally related glycoproteins in mammalian cells. Proc Natl AcadSci USA 1986; 83: 8351-8355
  • 7 Hynes RO. Integrins: Versatility modulation and signaling in cell adhesion. Cell 1992; 69: 11-25
  • 8 Ginsberg MH, Loftus JC, Plow EF. Cytoadhesins, integrins and platelets. Thromb Haemost 1988; 59: 1-6
  • 9 Sastry SK, Horwitz AF. Integrin cytoplasmic domains: Mediators of cyto-skeletal linkages and extra and intracellular initiated transmembrane signaling. Curr Opin Cell Biol 1992; 5: 819-831
  • 10 Ginsberg MH, Du X, Plow EF. Inside-out integrin signaling. Curr Opin Cell Biol 1992; 4: 766-771
  • 11 George JN, Caen JP, Nurden AT. Glanzmann’s thrombasthenia: The spectrum of clinical disease. Blood 1990; 75: 1383-1395
  • 12 Nurden AT, Caen JP. An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia. Br J Haematol 1974; 28: 253-260
  • 13 Phillips DR, Agin PP. Platelet membrane defects in Glanzmann’s thrombasthenia: evidence for decreased amounts of two major glycoproteins. J Clin Invest 1977; 60: 535-545
  • 14 Poncz MR, Eisman R, Heindenreich R, Silver SM, Vilaire G, Surrey S, Schwartz E, Bennett JS. Structure of the platelet membrane glycoprotein lib: homology to the a subunit of the vitronectin and fibronectin receptors. J Biol Chem 1987; 262: 8476-8482
  • 15 Heindenreich R, Eisman R, Delgrosso K, Surrey S, Bennett JS, Schwartz E, Poncz MR. The organization of the gene for platelet glycoprotein lib. Biochemistry 1990; 29: 1232-1244
  • 16 Fitzgerald LA, Steiner B, Rail SC, Lo S-S, Phillips DR. Protein sequence of endothelial glycoprotein Ilia derived from a cDNA clone: identity with platelet glycoprotein Ilia and similarities to integrin. J Biol Chem 1987; 262: 3936-3939
  • 17 Rosa J-P, Bray PF, Gayet O, Johnston GI, Cook RG, Shuman MA, McEver RP. Cloning of glycoprotein Ilia cDNA from human erythroleukemic cells and localization of the gene to chromosome 17. Blood 1988; 71: 593-600
  • 18 Lanza F, Kieffer N, Phillips DR, Fitzgerald LA. Characterization of the human platelet glycoprotein Ilia gene: comparison with the fibronectin receptor β-subunit gene. J Biol Chem 1990; 265: 18098-18103
  • 19 Zimrin AB, Giditz S, Lord S, Schwartz E, Bennett JS, White IIGC, Poncz M. The genomic organization of platelet glycoprotein Ilia. J Biol Chem 1990; 265: 8590-8595
  • 20 Burk CD, Newman PJ, Lyman S, Gill J, Coller BS, Poncz M. A deletion in the gene for glycoprotein lib associated with Glanzmann’s thrombasthenia. J Clin Invest 1991; 87: 270-276
  • 21 Kato A, Yamamoto K, Miyazaki S, Jung SM, Moroi M, Aoki N. Molecular basis for Glanzmann’s thrombasthenia (GT) in a compound heterozygote with glycoprotein lib gene: a proposal for the classification of GT based on the biosynthetic pathway of glycoprotein Ilb-IIIa complex. Blood 1992; 79: 3212-3218
  • 22 Iwamoto S, Nishiumi E, Kajii E, Ikemoto S. An exon 28 mutation resulting in alternative splicing of the glycoprotein lib transcript and Glanzmann’s thrombasthenia. Blood 1994; 83: 1017-1023
  • 23 Newman PJ, Seligsohn U, Lyman S, Coller BS. The molecular genetic basis of Glanzmann thrombasthenia in the Iraqi-Jewish and Arab populations in Israel. Proc Natl Acad Sci USA 1991; 88: 3160-3164
  • 24 Peretz H, Seligsohn U, Zwang E, Coller B, Newman PJ. Detection of the Glanzmann’s thrombasthenia mutations in Arab and Iraqi-Jewish patients by polymerase chain reaction and restriction analysis of blood or urine samples. [published erratum appears in Thromb Haemost 1991; 66 746] Thromb Haemost 1991; 66: 500-504
  • 25 Gu JM, Xu WF, Wang XD, Wu QY, Chi CW, Ruan CG. Identification of a nonsense mutation at amino acid Arg584 of platelet glycoprotein lib in patients with type I Glanzmann thrombasthenia. Br J Haematol 1993; 83: 442-449
  • 26 Poncz M, Rifat S, Coller BS, Newman PJ, Shattil SJ, Parrella T, Fortina P, Bennett JS. Glanzmann thrombasthenia secondary to a Gly273→Asp mutation adjacent to the first calcium-binding domain of platelet glycoprotein lib. J Clin Invest 1994; 93: 172-179
  • 27 Wilcox DA, Wautier JL, Pidard D, Newman PJ. A single amino acid substitution flanking the fourth calcium binding domain of alpha-IIb prevents maturation of the aIIbβ3 integrin complex. J Biol Chem 1994; 269: 4450-4457
  • 28 Bray PF, Shuman MA. Identification of an abnormal gene for the GPIIIa subunit of the platelet fibrinogen receptor resulting in Glanzmann’s thrombasthenia. Blood 1990; 75: 881-888
  • 29 Djaffar I, Pidard D, Caen J, Rosa J-P. An homozygous mutation in the gene coding for GPIIIa associated with Glanzmann’s thrombasthenia. Blood 1992; 78 (Suppl. 01) Suppl Abstract 395a 1570
  • 30 Simsek S, Heyboer H, de Bruijne-Admiraal LG, Goldschmeding R, Cuij-pers HThM, von dem Borne AEGKr. Glanzmann’s thrombasthenia caused by homozygosity for a splice defect that leads to deletion of the first coding exon of the glycoprotein Ilia mRNA. Blood 1993; 81: 2044-2049
  • 31 Loftus JC, O’Toole TE, Plow EF, Glass A, Frelinger AL, Ginsberg MH. A (33 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation. Science 1990; 249: 915-918
  • 32 Lanza F, Stierle A, Fournier D, Morales M, Andre G, Nurden AT, Cazenave JP. A new variant of Glanzmann’s thrombasthenia (Strasbourg I). Platelets with functionally defective glycoprotein Ilb-IIIa complexes and a glycoprotein Ilia Arg214→Trp214 mutation. J Clin Invest 1992; 89: 1995-2004
  • 33 Bajt ML, Ginsberg MH, Frelinger AL, Bemdt MC, Loftus C. A Spontaneous mutation of integrin aIIbP3 (platelet glycoprotein Ilb-IIIa) helps define a ligand binding site. J Biol Chem 1992; 267: 3789-3794
  • 34 Chen YP, Djaffar I, Pidard D, Steiner B, Cieutat AM, Caen JP, Rosa JP. Ser752→Pro mutation in the cytoplasmic domain of integrin (33 subunit and defective activation of platelet integrin aIIb(33 (glycoprotein Ilb-IIIa) in a variant of Glanzmann thrombasthenia. Proc Natl Acad Sci USA 1992; 89: 10169-10173
  • 35 Jin Y, Dietz HC, Nurden A, Bray PF. Single-strand conformation polymorphism analysis is a rapid aand effective method for the identification of mutations and polymorphisms in the gene for glycoprotein Ilia. Blood 1993; 82: 2281-2288
  • 36 Ferrer M, Fernandez M, Gonzalez-Manchon C, Iruin G, Ayuso MS, Parril-la R. Identification of a G→A transition that substitutes GPIIb Arg358 by His358 in a case of thrombasthenia of Glanzmann. In: Advances in Gene Technology: Molecular Biology and Human Disease. Whelan WJ, Ahmad F, Baumbach L, Bialy H, Black S, Davies K, Hodgson J, Howell RR, Huij-ing F, Scott WA (eds). IRL Press 1994: 12
  • 37 Wilcox DA, Gill J, Newman PJ. Glanzmann thrombasthenia resulting from a single amino acid substitution flanking the fibrinogen y-chain dodeca-pepetide binding domain on GPIIb. Blood 1993; 82: 210a
  • 38 Gonzalez RodriguezJ, Acuna AV, Alvarez MV, Jovin TM. Rotational mobility of the fibrinogen receptor glycoprotein Ilb-IIIa or integrin aIIb(33 in the plasma membrane of human platelet. Biochemistry 1994; 333: 266-274
  • 39 Mendez JA, Alvarez MV, Aznarez JA, Gonzalez Rodriguez J. Two-fold symmetry of human fibrinogen proved at the (3-chain distal domain by monoclonal immunoelectron microscopy image analysis. Biochemistry 1995 in press
  • 40 Markwell MAK, Haas SM, Biebel LL, Tolbert NE. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 1978; 87: 206-210
  • 41 Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 1989; 5: 874-879
  • 42 Hongyo T, Buzard GS, Calvert RJ, Weghorst CM. “Cold SSCP”: a simple rapid and non-radioactive method for optimized single-strand conformation polymorphism analysis. Nucleic Acid Res 1993; 21: 3637-3642
  • 43 Marchuk D, Drumm M, Saulino A, Collins FS. Construction of T-vectors a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acid Res 1991; 19: 1154
  • 44 Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 1977; 74: 5463-5467
  • 45 Marck C. A “C” program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acid Res 1988; 16: 1829-1836
  • 46 Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 1989; 77: 61-68
  • 47 Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1989
  • 48 Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156-159
  • 49 Coller BS, Seligsohn U, Peretz H, Newman PJ. Glanzmann thrombasthenia: New insights from a historical perspective. Seminars in Hematology 1994; 31: 301-311
  • 50 Argraves WS, Suzuki S, Arai H, Thompson K, Piersbacher MD, Ruoslhati E. Amino acid sequence of the human fibronectin receptor. J Cell Biol 1987; 105: 1183-1190
  • 51 Suzuki S, Argraves WS, Arai H, Languino LR, Piersbacher MD, Ruoslhati E. Amino acid sequence of the vitronectin receptor alpha subunit and comparative expression of adhesion receptor mRNAs. J Biol Chem 1987; 262: 14080-14085
  • 52 Wilcox DA, Paddock CM, Lyman S, Gill JC, Newman PJ. Glanzmann thrombasthenia resulting from a single amino acid substitution between the second and third calcium-binding domains of GPIIb. Role of the GPIIb amino terminus in integrin subunit association. J Clin Invest 1995; 95: 1553-1560
  • 53 O’Toole TE, Loftus JC, Plow EF, Glass AA, Harper JR, Ginsberg MH. Efficient surface expression of platelet GPIIb-IIIa requires both subunits. Blood 1989; 74: 14-18
  • 54 Kolodziej MA, Vilaire G, Rifat S, Poncz M, Bennett JS. Effect of deletion of glycoprotein lib exon 28 on the expression of the platelet glycoprotein Ilb/IIIa complex. Blood 1991; 78: 2344-2353
  • 55 Duperray A, Troesch A, Berthier R, Chagnon E, Frachet P, Uzan G. Mar-guerie G. Biosynthesis and assembly of platelet GPIIb-IIIa in human megakaryocytes: Evidence that assembly between pro-GPIIb and GPIIIa is a prerequisite for expression of the complex on the cell surface. Blood 1989; 74: 1603-1611
  • 56 Hershkowitz I. Functional inactivation of genes by dominant negative mutations. Nature 1987; 329: 219-222
  • 57 Parrilla R, Mixson J, McPherson J, McClaskey J. Characterization of seven novel mutations of the c-erbA-(3 gene in patients with generalized thyroid hormone resistance. Evidence for two hot spot regions of the ligand binding domain. J Clin Invest 1991; 88: 2123-2130
  • 58 Nagaya T, Jameson JL. Thyroid hormone receptor dimerization is required for dominant negative inhibition by mutations that cause thyroid hormone resistance. J Biol Chem 1993; 268: 15766-15771
  • 59 Unger T, Mietz JA, Scheffiner M, Yee CL, Howley PM. Functional domains of wild type and mutant p53 proteins involved in transcriptional regulation transdominant inhibition and transformation suppression. Mol Cell Biol 1993; 13: 5186-5194
  • 60 Frattali AL, Treadway JL, Pessin JE. Insulin/IGF-1 hybrid receptors: implications for the dominant negative phenotype in syndromes of insulin resistance. J Cell Biochem 1992; 48: 43-50