Thromb Haemost 1996; 76(06): 0835-0856
DOI: 10.1055/s-0038-1650674
Review Article
Schattauer GmbH Stuttgart

ADP Receptors on Platelets

David C B Mills
1   The Sol Sherry Thrombosis Research Center, Temple University Health Science Center, Philadelphia, PA, USA
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 18. März 1996

Accepted after revision 23. August 1996

Publikationsdatum:
11. Juli 2018 (online)

 
  • References

  • 1 Drury AN, Szent-Gyorgi A. The physiological activity of adenine compounds, with special reference to their action on the mammaliam heart. J Physiol 1929; 68: 213-237
  • 2 Green HN, Stoner HB. Biological Actions of the Adenine Nucleotides. London: HK: Lewis & Co. Ltd; 1950
  • 3 Hellem A. The adhesiveness of human blood platelets in vitro. Scand J Clin Invest 1960; 12: 1-17
  • 4 Gaarder A, Jonsen A, Laland S, Hellem AJ, Owren P. Adenosine diphosphate in red cells as a factor in the adhesiveness of human blood platelets. Nature (Lond.) 1961; 192: 531-532
  • 5 Bumstock G. Purinergic receptors. London: Chapman and Hall: 1981
  • 6 Bumstock G, Kennedy C. Is there a basis for distinguishing two types of P2 purinoceptor?. Gen Pharm 1985; 16: 433-440
  • 7 Fredholm B, Abbracchio MP, Bumstock G, Daly JW, Harden TK, Jacobson KA, Leff P, Williams M. Nomenclature and classification of purino-ceptors. Pharm Rev 1994; 46: 143-156
  • 8 Abbracchio MP, Bumstock G. Purinoceptors: are there three families of P2x and P2y purinoceptors?. Parmacol Ther 1994; 64: 445-475
  • 9 Webb TE, Simon J, Krishek BJ, Bateson AN, Smart TG, King BF, Bumstock G, Barnard EA. Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett 1993; 324: 219-225
  • 10 Lustig KD, Shiau AK, Brake AJ, Julius D. Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci USA 1993; 90: 5113-5117
  • 11 Erb L, Lustig KD, Sullivan DM, Turner JT, Weisman GA. Functional expression and photoaffinity labeling of a cloned P2U receptor. Proc Natl Acad Sci USA 1993; 90: 10449-10453
  • 12 Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, Buell G. A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature 1994; 371: 516-519
  • 13 Brake AJ, Wagenbach MJ, Julius D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 1994; 371: 519-523
  • 14 Filtz TM, Li Q, Boyer JL, Nicholas RA, Harden TK. Expression of a cloned P2y purinergic receptor that couples to phospholipase C. Mol Pharmacol 1994; 46: 8-14
  • 15 Parr CE, Sullivan DM, Paradiso AM, Lazarowski ER, Burch LH, Olsen JC, Erb L, Weissman GA, Boucher RC, Turner JT. Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc Natl Acad Sci USA 1994; 91: 3275-3279
  • 16 Nguyen T, Erb L, Weisman GA, Marchese A, Heng HHQ, Garrad RC, George SR, Turner JT, O’Dowd BF. Cloning, expression, and chromosomal localization of the human uridine nucleotide receptor. J Biol Chem 1995; 270: 30845-30848
  • 17 Communi D, Pirotton S, Parmentier M, Boeynaems J-M. Cloning and functional expression of a human uridine nucleotide receptor. J Biol Chem 1995; 270: 30849-30852
  • 18 Chang K, Hanaoka K, Kumada M, Takuwa Y. Molecular cloning and functional analysis of a novel P2 nucleotide receptor. J Biol Chem 1995; 270: 26152-26158
  • 19 Erb L, Garrad R, Wang Y, Quinn T, Turner JT, Weisman GA. Site-directed mutagenesis of P2U purinoceptors. Positively charged aminoacids in transmembrane helices 6 and 7 affect agonist potency and specificity. J Biol Chem 1995; 270: 4185-4188
  • 20 Boarder MR, Weisman GA, Turmer JT, Wilkinso GF. G protein-coupled purinoceptors: from molecular biology to functional responses. Trends Pharm Sci 1995; 16: 133-139
  • 21 Barnard EA, Bumstock G, Webb TA. G protein-coupled receptors for ATP and other nucleotides: a new receptor family. Trends Pharm Sci 1994; 15: 67-70
  • 22 Simon J, Webb TE, Krishek BJ, King BF, Bumstock G, Barnard EA. Characterisation of a recombinant P2Y purinoceptor. Europ J Pharm 1995; 291: 281-289
  • 23 Webb TE, Henderson D, King BF, Wang S, Simon J, Bateson AA, Bum-stock G, Barnard EA. A novel G protein-coupled P2 purinoceptor (P2Y3) activated preferentially by nucleoside diphosphates. Mol Pharm 1996; 50: 258-265
  • 24 Nicholas RA, Watt WC, Lazarowski ER, Li Q, Harden TK. Uridine nucleotide selectivity of three phospholipase C-activating P2 receptors: Identification of a UDP-selective, a UTP-selective, and an ATP- and UTP specific receptor. Mol Pharm 1996; 50: 2224-2229
  • 25 Cockroft S, Gomperts BD. Activation and inhibition of calcium-dependent histamine secretion by ATP ions applied to mast cells. J Physiol 1979; 296: 229-243
  • 26 Tatham PER, Cusack NJ, Gomperts BD. Characterisation of the ATP4- receptor that mediates permeabilisation of rat mast cells. Europ J Pharm 1988; 147: 13-21
  • 27 Surprenant A, Rassendren F, Kawashima E, North RA, Buell G. The cytolytic P2x receptor for extracellular ATP identified as a P2x receptor (P2x7). Science 1996; 272: 735-738
  • 28 Castro E, Pintor J, Miras-Portugal MT. Ca2+ stores mobilization by diadenosine tetraphosphate, Ap4A, through a putative P2y purinoceptor in adrenal chromaffin cells. Br J Pharmacol 1992; 106: 833-837
  • 29 Pintor J, Miras-Portugal MT. P2 purinergic receptors for diadenosine polyphosphates in the central nervous system. Gen Pharm 1995; 26: 229-235
  • 30 Lazarowski ER, Watt WC, Stutts MJ, Boucher RC, Harden TK. Pharmacological activity of the cloned human P2U-purinoceptor: potent activation by diadenosine tetraphosphate. Brit J Parmacol 1995; 116: 1619-1627
  • 31 Ollgaard E. Macroscopic studies of platelet aggregation. Thromb Diath Haemorrh 1961; 6: 86-97
  • 32 O’Brien JR. Platelet aggegation. Part I. Some effects of the adenosine phosphates, thrombin and cocaine upon platelet adhesiveness. J Clin Path 1962; 15: 446-451
  • 33 Bom GVR. Platelet aggregation and its reversal. Nature (Lond) 1962; 194: 927-929
  • 34 O’Brien JR. Platelet aggegation. Part II. Some results from a new method of study. J Clin Path 1962; 15: 452-455
  • 35 Cuthbertson WFJ, Mills DCB. A miniature nephelometer for the study of platelet clumping. J Physiol 1963; 168: 29P
  • 36 Gaarder A, Laland S. Hypothesis for the aggregation of platelets by nucleotides. Nature 1964; 202: 909-910
  • 37 Harrison MJ, Brossmer R. Inhibition of ADP-induced platelet aggregation by adenosine tetraphosphate. Thromb Haemost 1976; 36: 388-391
  • 38 Clayton S, Born GVR, Cross MJ. Inhibition of the aggregation of blood platelets by nucleosides. Nature 1963; 200: 138-139
  • 39 Bom GVR, Cross MJ. The aggregation of blood platelets. J Physiol 1965; 168: 178-195
  • 40 Packham MA, Guccione MA, Perry DW, Mustard JF. AMP inhibition of reactions of ADP with washed platelets from humans and rabbits. Am J Physiol 1972; 223: 419-424
  • 41 Bom GVR, Mills DCB. Potentiation of the inhibitory effect of adenosine on blood platelet aggregation by drugs that prevent its uptake. J Physiol 1969; 202: 41P
  • 42 Sattin A, Rail TW. The effect of adenosine and adenine nucleotides on the cyclic adenosine 3’,5’-monophosphate content of guiea pig cerebral cortical slices. Mol Pharmacol 1970; 6: 13-23
  • 43 Ardlie NG, Glew G, Schultz BG, Schwartz CJ. Inhibition and reversal of platelet aggregation by methyl xanthines. Thromb Diath Haemorrh 1967; 18: 670-673
  • 44 Mills DCB, Smith JB. The influence on platelet aggregation of drugs that affect the accumulation of 3’5’-adenosine monophosphate in platelets. Biochem J 1971; 121: 185-196
  • 45 Spaet TH, Lejnieks I. Studies of the mechanism whereby platelets are clumped by adenosine diphosphate. Thromb Diath Haemorrh 1966; 15: 36-51
  • 46 Guccione MA, Packham MA, Kinlough-Rathbone RL, Mustard JF. Reactions of 14C ADP and 14C ATP with washed platelets from rabbits. Blood 1971; 37: 542-545
  • 47 Packham MA, Guccione MA, Perry DW, Mustard JF. Interactions of nucleoside di and tri-phosphates with rabbit platelets. Am J Physiol 1974; 227: 1143-1148
  • 48 Mustard JF, Packham MA, Perry DW, Guccione MA, Kinlough-Rathbone RL. Enzyme activities on the platelet surface in relation to the action of adenosine diphosphate. In: Biochemistry and Pharmacology of Platelets. Ciba Foundation Symposia Vol. 35 Elsevier/Excerpta Medica North Holland: Amsterdam: 1975: 47-75
  • 49 O’Brien JR. Effects of adenosine diphosphate and adrenaline on mean platelet shape. Nature 1965; 207: 306-307
  • 50 Macmillan DC, Oliver MF. The initial changes in platelet morphology following the addition of adenosine diphosphate. J Atheroscler Res 1965; 5: 440-444
  • 51 Bom GVR. Observations on the change of shape of blood platelets brought about by adenosine diphosphate. J Physiol 1970; 209: 487-511
  • 52 Michal F, Bom GVR. Effect of the rapid shape change of platelets on the transmisssion and scattering of light through plasma. Nature 1971; 231: 220-222
  • 53 Zucker MB, Grant RA. Nonreversible loss of platelet aggregability induced by calcium deprivation. Blood 1978; 52: 505-514
  • 54 Cole B, Robison GA, Hartmann RC. Studies on the role of cyclic AMP in platelet function. Ann NY Acad Sci 1971; 185: 477-487
  • 55 Mills DCB, Smith JB. The control of platelet responsiveness by agents that influence cyclic AMP metabolism. Ann NY Acad Sci 1972; 201: 391-399
  • 56 Macfarlane DE, Mills DCB. Inhibition by ADP of prostaglandin induced accumulation of cyclic AMP in human platelets. J Cyclic Nucleotide Res 1981; 7: 1-11
  • 57 Hall DA, Frost V, Hourani SMO. Effects of extracellular divalent cations on responses of human blood platelets to adenosine diphosphate. Brit J Pharmacol 1994; 48: 1319-1326
  • 58 Rink TJ, Hallam TJ. What turns platelets on?. Trends Biochem Sci 1984; 9: 215-219
  • 59 Hallam TJ, Rink TJ. Agonists stimulate divalent cation channels in the plasma membrane of human platelets. FEBS Letters 1985; 186: 175-179
  • 60 Hallam TJ, Rink TJ. Response to adenosine diphosphate in human platelets loaded with the fluorescent calcium indicator Quin 2. J Physiol 1985; 368: 131-146
  • 61 Sage SO, Rink T. Kinetic differences between thrombin-induced and ADP-induced calcium influx and release from internal stores in fura-2-loaded human platelets. Biochem Biophys Res Commun 1986; 136: 1124-1129
  • 62 Sage SO, Merritt JE, Hallam TJ, Rink T. Receptor-mediated calcium entry in fura-2-loaded human platelets stimulated with ADP and thrombin. Dual wavelength studies with Mn2+ . Biochem J 1989; 258: 923-926
  • 63 Sage SO, Jobson TM, Rink T. Agonist-evoked changes in cytosolic pH and calcium concentration in human platelets: studies in physiological bicarbonate. J Physiol 1990; 420: 31-45
  • 64 Sage SO, Reast R, Rink T. ADP evokes biphasic Ca2+ influx in Fura-2 loaded human platelets. Evidence for Ca2+ entry regulated by the intracellular store. Biochem J 1990; 265: 675-680
  • 65 Mahout-Smith MP, Sage SO, Rink TJ. Receptor-activated single channels in intact human platelets. J Biol Chem 1990; 265: 10479-10483
  • 66 Mahout-Smith MP, Sage SO, Rink TJ. Rapid ADP-evoked currents in human platelets recorded with the nystatin permeabilized patch technique. J Biol Chem 1992; 267: 3060-3065
  • 67 Sage SO, Mahaut-Smith MP, Rink TJ. Calcium entry in nonexcitable cells: lessons from human platelets. News Physiol Sci 1992; 7: 108-113
  • 68 Geiger J, Walter U. Properties and regulation of human platelet cation channels. In: Nonselective Cation Channels: Pharmacology, Physiology and Biophysics Sieman D, Heschler J. (eds). Basel: Birkhauser Verlag: 1993: 281-288
  • 69 MacKenzie AB, Mahaut-Smith MP, Sage SO. Activation of receptor-operated cation channels via P2Xi not P2T purinoceptors in human platelets. J Biol Chem 1996; 271: 2879-2881
  • 70 Bom GVR. Uptake of adenosine and of adenosine diphosphate by human blood platelets. Nature 1965; 206: 1121-1122
  • 71 Salzman EW, Chambers DA. Incorporation by blood platelets of adenosine diphosphate labelled with carbon 14. Nature 1965; 206: 727-728
  • 72 Boullin DJ, Green AR, Price KS. The mechanism of adenosine diphosphate induced platelet aggregation: binding to platelet receptors and inhibition of binding by PGE1 . J Physiol 1972; 221: 415-426
  • 73 Legrand C, Caen JP. Binding of 14C ADP by thrombasthenic platelet membranes. Haemostasis 1976; 5: 231-238
  • 74 Legrand C, Caen JP. Binding of 14C ADP to normal and thrombasthenic platelet membranes. Studies of the dissociation of the nucleotide from its receptors. Haemostasis 1978; 7: 339-351
  • 75 Bauvois B, Legrand C, Caen JP. Interaction of adenosine and adenylnu-cleotides with the human platelet membrane: Further characterization of the ADP binding sites. Haemostasis 1980; 9: 92-104
  • 76 Lips JPM, Sixma JJ, Schiphorst ME. Binding of adenosine diphosphate to human blood platelets and to isolated platelet membranes. Biochim Biphys Acta 1980; 628: 451-467
  • 77 Salzman EW, Chambers DA, Neri LL. Incorporation of labeled nucleotides and aggregation of human blood platelets. Thromb Diath Haemorrh 1966; 15: 52-68
  • 78 Mills DCB, Haslam RJ. Unpublished findings. 1968
  • 79 Salzman EW, Ashford TP, Chambers DA, Neri LL. Platelet incorporation of labeled adenosine and adenosine diphosphate. Thromb Diath Haemorrh 1969; 22: 304-315
  • 80 Bom GVR, Feinberg H. Binding of adenosine diphosphate to intact human platelets. J Physiol 1975; 251: 803-816
  • 81 Nachman RL, Ferris B. Binding of adenosine diphosphate by isolated membranes from human platelets. J Biol Chem 1974; 249: 704-710
  • 82 Adler JR, Handin RI. Solubilization and characterization of a platelet membrane ADP-binding protein. J Biol Chem 1979; 254: 3866-3872
  • 83 Cusack NJ, Hickman ME, Bom GVR. Effects of D- and L-enantiomers of adenosine, AMP and ADP and their 2-chloro- and 2-azido-analogues on human platelets. Proc R Soc B 1979; 206: 139-144
  • 84 Hourani SMO, Cusack NJ. Action and structure-activity relationships of purines on platelets. In: Purines: Pharmacology and Physiological Roles Stone TW. ed. Macmillan: London: 1985: 163-173
  • 85 Cusack NJ, Hourani SMO. Partial agonist behaviour of adenosine 5’-O-(2-thiodiphosphate) on human platelets. Brit J Pharmacol 1981; 73: 405-408
  • 86 Cusack NJ, Hourani SMO. Competitive inhibition by adenosine 5’-triphosphate of the actions on human platelets of 2-chloroadenosine 5’-diphosphate, 2-azidoadenosine 5’-diphosphate and 2-methylthioadenosine 5’-diphosphate. Brit J Pharmacol 1982; 77: 329-333
  • 87 Horak H, Barton PG. Effects of α, β-methylene-adenosine 5’-diphosphate on blood platelet aggregation. Biochem Biophys Acta 1974; 373: 471-480
  • 88 Cusack NJ, Pettey CJ. Effects of phosphate-modified analogues of adenosine 5’-diphosphate and adenosine 5’-triphosphate at P2T-purinoceptors mediating human platelet activation by ADP. Drug Dev Res 1996; 37: 212-222
  • 89 Cusack NJ, Pettey CJ. Effect of isopolar, isosteric phosphonate analogues of adenosine 5’-diphosphate (ADP) on human platelets. In: Adenosine and Adenine Nucleotides: Physiology and Pharmacology Paton DM. ed. Taylor and Francis: London: 1988: 287
  • 90 Bom GVR, Foulkes JG. Inhibition by a stable analogue of adenosine triphosphate of platelet aggregation by adenosine diphosphate. Brit J Pharmacol 1977; 61: 87-89
  • 91 Evans PM. Inhibition of ADP-induced aggregation of human platelets by β,γ-methylene-ATP. Cytobios 1979; 23:=: 101-108
  • 92 Luthje J, Ogilvie A. Diadenosine triphosphate (Ap3A) mediates human platelet aggregation by liberation of ADP. Biochem Biophys Res Comm 1984; 118: 704-709
  • 93 Luthje J, Baringer J, Ogilvie A. Highly efficient induction of human platelet aggregation in heparinized platelet-rich plasma by diadenosine triphosphate (Ap3A). Thromb Haemost 1985; 54: 469-471
  • 94 Harrison MJ, Brossmer R, Goody RS. Inhibition of platelet aggregation and the platelet release reaction by α,ω diadenosine polyphosphates. FEBS Letters 1975; 54: 57-60
  • 95 Macfarlane DE, Mills DCB. The effects of ATP on platelets: Evidence against the central role of ADP in primary aggregation. Blood 1975; 46: 309-320
  • 96 Cusack NJ, Hourani SMO. Adenosine diphosphate antagonists and human platelets: no evidence that aggregation and inhibition of adenylate cyclase are mediated by different receptors. Brit J Pharmacol 1982; 76: 221-227
  • 97 Cusack NJ, Hourani SMO. Specific but non-competitive inhibition by 2-alkylthio analogues of adenosine 5’-monophosphate and adenosine 5’-triphosphate on human platelet aggregation induced by adenosine 5’-diphosphate. Brit J Pharmacol 1982; 75: 397-400
  • 98 Mills DCB. The breakdown of adenosine diphosphate and of adenosine triphosphate in plasma. Biochem J 1966; 98: 32-3P
  • 99 Ireland DM, Mills DCB. Detection and determination of adenosine diphosphate and related substances in plasma. Biochem J 1966; 99: 283-296
  • 100 Haslam RJ, Mills DCB. The adenylate kinase of human plasma, erythrocytes and platelets in relation to the degradation of adenosine diphosphate in plasma. Biochem J 1967; 103: 773-784
  • 101 Richardson DJ, Smith GP, Meade TW, Langley P, Peters TJ. Assay, kinetics and properties of plasma adenosine diphosphatase. The relationship to acid and alkaline phosphatase and variations in disease. Clin Chim Acta 1982; 121: 87-94
  • 102 Mason RG, Saba SR. Platelet ATPase activity. I. Ecto-ATPase of intact platelets and their possible role in aggregation. Am J Pathol 1969; 55: 215-223
  • 103 Luthje J, Schomberg A, Ogilvie A. Demonstration of a novel ecto-enzyme on human erythrocytes, capable of degrading ADP and inhibiting ADP-induced platelet aggregation. Europ J Biochem 1988; 175: 285-289
  • 104 Gordon JL, Pearson JD, Slakey LL. The hydrolysis of extracellular nucleotides by cultured endothelial cells from pig aorta. Feed-forward inhibition of adenosine production at the cell surface. J Biol Chem 1986; 261: 15496-15504
  • 105 Coade SB, Pearson JD. Metabolism of adenine nucleotides in whole blood. Circul Res 1989; 65: 531-537
  • 106 Humphries RG, Tomlinson W, Clegg JA, Ingall AH, Kindon ND, Leff P. Pharmacological profile of the novel P2T-purinergic receptor antagonist, FPL 67085 in vitro and in the anaesthetized rat in vivo. Brit J Pharm 1995; 115: 1110-1116
  • 107 Humphries RG, Robertson MJ, Leff P. A novel series of P2T purinoceptor antagonists: definition of the role of ADP in arterial thrombosis. Trends Pharm Sci 1995; 16: 179-181
  • 108 Kim BK, Zamecnik PC, Taylor G, Guo MJ, Blackburn GM. Antithrombotic effect of β, β’ -monochloromethylene diadenosine 5, ’5 ’’’ -P1 ,P4-tet-raphosphate. Proc Natl Acad Sci USA 1992; 89: 11056-11058
  • 109 Hourani SMO, Hall DA, Nieman CJ. Effects of the P2-purinoceptor antagonist, suramin, on human platelet aggregation induced by adenosine 5’-diphosphate. Br J Pharmacol 1992; 105: 453-457
  • 110 Hall DA, Hourani SMO. Effects of suramin on increases in cytosolic calcium and on inhibition of adenylate cyclase induced by adenosine 5’-diphosphate in human platelets. Biochem Pharmacol 1994; 47: 1013-1018
  • 111 Subbarao K, Kuchibhotla J, Kakkar VV. Pyridoxal 5’-phoshate - a new physiological inhibitor of blood coagulation and platelet function. Biochem Pharmacol 1979; 28: 531-534
  • 112 Robey FA, Jamieson GA, Hunt JB. Synthesis and use of a new spin-labeled analogue of ADP with platelet-aggregating activity. J Biol Chem 1979; 254: 1114-1118
  • 113 Macfarlane DE, Srivastava PC, Mills DCB. β32P]-Methylthioadenosine [|332P]diphosphate. An agonist and radioligand for the receptor that inhibits the accumulation of cyclic AMP in intact blood platelets. J Clin Invest 1983; 71: 420-428
  • 114 Hall DA, Hourani SMO. Effects of adenine nucleotides on increases in intracellular calcium mediated by P2T-purinoceptors on human platelets. Br J Pharmacol 1993; 108: 728-733
  • 115 Haslam RJ, Cusack NJ. Blood platelet receptors for ADP and for adenosine. In: Purinergic Receptors: Receptors and Recognition. Series Bum-stock BG. ed. Chapman and Hall: London: 1981: 221-285
  • 116 Cusack NJ, Hourani SMO, Welford LA. Characterisation of ADP receptors. Adv Exp Med Biol 1985; 192: 29-39
  • 117 Macfarlane DE. Agonists and receptors: adenosine diphosphate. In: Platelet Responses and Metabolism. Vol II: Receptors and Metabolism Holm-sen H. ed. CRC Press; Boca Raton: 1987: 19-36
  • 118 Haslam RJ. Signal transduction in platelet activation. In: Thrombosis and Haemostasis 1987 Verstraete M. et al., eds. Leuven University Press; Leuven: 1987: 147-174
  • 119 Hourani SMO, Cusack NJ. Pharmacological receptors on blood platelets. Pharmacol Rev 1991; 43: 243-298
  • 120 Hourani SMO, Hall DA. Receptors for ADP on human platelets. Trends Pharmacol Sci 1994; 15: 103-108
  • 121 Hourani SMO, Weford LA, Cusack NJ. Effects of 2-methylthioadenosine 5’-β,γ-methylenetriphosphonate and 2-ethylthioadenosine 5’-monophosphate on human platelet activation induced by adenosine 5’-diphosphate. Drug Dev Res 1996 38. in press
  • 122 Cusack NJ, Bom GVR. Effects of photolysable 2-azido analogues of adenosine, AMP and ADP on human platelets. Proc R Soc B 1977; 197: 515-520
  • 123 Macfarlane DE, Mills DCB, Srivastava PC. Binding of 2-azidoadenosine [β32P]diphosphate to the receptor on intact human blood platelets which inhibits adenylate cyclase. Biochemistry 1982; 21: 544-549
  • 124 Gilchrist TL, Rees CW. Carbenes, Nitrenes, and Arynes. New York: Ap-pleton-Century-Crofts 1969
  • 125 Galitzky J, Senard JM, Lafontan M, Stillings M, Montastmc J, Berlan M. Identification of human platelet α2-adrenoceptors with a new antagonist [3H]-RX821002, a 2-methoxy derivative of idazoxan. Br J Pharm 1990; 100: 862-866
  • 126 Scrutton MC, Thompson NT, Hallam TJ. Agonists and receptors: vasopressin. In: Platelet Responses and Metabolism: Receptors and Metabolism Holmsen H. ed. CRC Press; Boca Raton: 1987: 69-82
  • 127 Kloprogge E, Akkerman JWN. Binding kinetics of PAF-acether (l-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) to human platelets. Biochem J 1984; 223: 901-909
  • 128 Ukena D, Dent G, Birke FW, Robout C, Sybrecht GW, Barnes PJ. Radioligand binding of antagonists of platelet-activating factor to human platelets. FEBS Lett 1988; 228: 285-289
  • 129 Morinelli TA, Oatis JE, Okwu AK, Mais DE, Mayeux PR, Masuda A, Knapp DR, Halshka PV. Characterisation of an 125I-labeled thromboxane A2/prostaglandin H2 receptor agonist. J Pharmacol Exp Ther 1989; 251: 557-562
  • 130 Cristalli G, Mills DCB. Identification of a receptor for ADP on blood platelets by photoaffinity labelling. Biochem J 1993; 291: 875-881
  • 131 Mills DCB, Sheth S, Strouse R, Schick PK, Greco N, Jamieson GA, Cristalli G. A new photoaffinity label for ADP receptors: 2-(p-azidophenyl)-ethylthioadenosine-5’-diphosphate (AzPET-ADP). Thromb Haemost 1993; 69: 1340
  • 132 Mills DCB, Macfarlane DE. Attempts to define a platelet ADP receptor with 203Hg-mercuribenzene sulphonate (MBS). Thromb Haemost 1977; 38: 82(1977)
  • 133 Okuma M, Steiner M, Baldini MG. Studies on lipid peroxides in platelets I. Method of assay and effects of storage. J Lab Clin Med 1970; 75: 283-296
  • 134 Mills DCB, Macfarlane DE. Unpublished observation. 1978
  • 135 Soslau G, Parker J. Modulation of platelet function by extracellular adenosine triphosphate. Blood 1989; 74: 984-993
  • 136 Soslau G, Brodsky I, Parker J. Occupancy of P2 purinoceptors with unique properties modulates the function of human platelets. Biochim Biophys Acta 1993; 1177: 199-207
  • 137 Agarwal AK, Tandon NN, Greco NJ, Jamieson GA. Evaluation of the binding to fixed platelets of agonists and antagonists of ADP-induced platelet aggregation. Thromb Haemost 1989; 62: 1103-1106
  • 138 Greco NJ, Tandon NN, Jackson BW, Jamieson GA. Low structural specificity for nucleoside triphosphates as antagonists of ADP-induced platelet activation. J Biol Chem 1922; 267: 2966-2970
  • 139 Greco NJ, Yamamoto N, Jackson BW, Tandon NN, Moos MJ, Jamieson GA. Identification of a nucleotide-binding site on glycoprotein lib. Relationship to platelet activation. J Biol Chem 1991; 266: 13627-13633
  • 140 Greco NJ, Tandon NN, Jackson B, Jamieson GA. Adenine nucleotide binding and photoincorporation in Glanzmann’s thrombasthenic platelets. Biochim Biophys Acta 1995; 1236: 142-148
  • 141 Mills DCB. Factors influencing the adenylate cyclase system in blood platelets. In: Platelets and Thrombosis Sherry S, Scriabine A. (eds). Baltimore: University Park Press; 1974: 45-67
  • 142 Powling MJ, Hardisty RM. Glycoprotein IIb-IIIa complex and Ca2+influx into stimulated platelets. Blood 1985; 66: 731-734
  • 143 Mayinger P, Gawaz M. Photoaffinity labeling of integrin αIIβ3 (glycoprotein IIb-IIIa) on intact platelets with 8-azido-[γ32P]ATP. Biochim Biophys Acta 1992; 1137: 77-81
  • 144 Colman RF. Site specific modification of enzyme sites. In: The Enzymes Vol. 19 New York: Academic Press; 1990: 283-321
  • 145 Bennett JS, Colman RF, Colman RW. Identification of adenine nucleotide binding proteins in human platelet membranes by affinity labelling with 5-p-fluorosulfonylbenzoyl adenosine. J Biol Chem 1978; 253: 7346-7354
  • 146 Figures WR, Niewiarowski S, Morinelli TA, Colman RF, Colman RW. Affinity labeling of a human platelet membrane protein with 5-p-fluorosulfonylbenzoyl adenosine. Concomitant inhibition of ADP-induced platelet aggregation and fibrinogen receptor exposure. J Biol Chem 1981; 256: 7789-7795
  • 147 Colman RW, Figures W. Characteristics of an ADP receptor mediating platelet activation. Mol Cell Biochem 1984; 59: 101-111
  • 148 Figures WR, Scearce L, Wachtfogel Y, Chen J, Colman RF, Colman RW. Platelet ADP receptor and α2-adrenoceptor interaction. Evidence for an ADP requirement for epinephrine-induced platelet activation and an influence of epinephrine on ADP binding. J Biol Chem 1986; 261: 5981-5986
  • 149 Colman RW, Figures WR, Wu QX, Chung XY, Morinelli TA, Tuszynski GP, Colman RF, Niewiarowski S. Distinction between glycoprotein IIIa and the 100 kDa membrane protein (aggrogin) mediating ADP-induced platelet activation. Arch Biochem Biophys 1988; 262: 298-306
  • 150 Colman RW. Aggregin: a platelet ADP receptor that mediates aggregation. FASEB J 1990; 3: 1425-1435
  • 151 Colman RW. Platelet ADP receptors stimulating shape change and inhibiting adenylate cyclase. News Physiol Sci 1992; 7: 274-278
  • 152 Colman RW, Cook JC, Niewiarowski S. Mechanisms of platelet aggregation. In: Hemostasis and Thrombosis. 3rd edn Colman RW. et al. (eds). Philadelphia: Lippincott: 1994: 508-523
  • 153 Mills DCB, Figures WR, Scearce LM, Stewart GJ, Colman RF, Colman RW. Two mechanisms for inhibition of ADP-induced platelet shape change by 5’-p-fluorosulfonylbenzoyl adenosine: conversion to adenosine and covalent modification at an ADP binding site distinct from that which inhibits adenylate cyclase. J Biol Chem 1985; 260: 8078-8083
  • 154 Morinelli TA, Niewiarowski S, Komecki E, Figures WR, Wachtfogel Y, Colman RW. Platelet aggregation and exposure of fibrinogen receptors by prostaglandin endoperoxide analogues. Blood 1986; 61: 41-49
  • 155 Figures WR, Scearce L, DeFeo P, Stewart G, Zhou F, Chen J, Daniel JL, Colman RF, Colman RW. Direct evidence for the interaction of the nucleotide affinity analog 5’-p-fluorosulfonylbenzoyl adenosine with a platelet ADP receptor. Blood 1987; 70: 796-803
  • 156 Russo MA, Mills DCB. Effects of N-ethyl maleimide (NEM) on platelet ultrastructure. Circulation 1976; 54: 195
  • 157 Rao AK, Kowalska MA. ADP-induced platelet shape change and mobilization of cytoplasmic ionized calcium are mediated by distinct binding sites on platelets: 5’-p-fluorosulfonylbenzoyladenosine is a weak platelet agonist. Blood 1987; 70: 751-756
  • 158 Greenberg JP, Packham MA, Guccione MA, Harfenist EJ, Orr JL, Kinlough-Rathbone RL, Perry DW, Mustard JF. The effect of pretreatment of human or rabbit platelets with chymotrypsin on their responses to human fibrinogen and aggregating agents. Blood 1979; 54: 753-765
  • 159 Colman RW, Walsh PN. Mechanisms of platelet aggregation. In: Hemostasis and Thrombosis. 2nd edn Colman RW. et al. (eds) Philadelphia: Lippincott: 1986: 594-605
  • 160 Figures WR, Scearce L, Colman RF, Colman RW. Interaction of nucleotide affinity analog 5’-p-sulfonylbenzoyl adenosine with platelet ADP receptor: aggregin. Meth Enz 1992; 215: 143-155
  • 161 Puri RN, Kumar A, Chen H, Colman RF, Colman RW. Inhibition of ADP-induced platelet responses by covalent modification of aggregin, a putative ADP receptor, by 8-(4-bromo-2,3-dioxobutylthio)ADP. J Biol Chem 1995; 270: 24482-24488
  • 162 Puri RN, Colman RF, Colman RW. Platelet activation by 2-(4-bromo-2,3-dioxobutylthio)adenosine 5’diphosphate is mediated by its binding to a putative ADP receptor, aggregin. Eur J Biochem 1996; 236: 862-870
  • 163 Puri RN, Colman RW. Inhibition of ADP-induced platelet activation by 7-chloro-4-nitrobenz-2-oxa-l,3-diazole: Covalent modification of aggregin, a putative ADP receptor. J Cell Biochem 1996; 61: 97-108
  • 164 Cattaneo M, Lecchi A, Randi AM, McGregor JL, Mannucci PM. Identification of a new congenital defect of platelet aggregation characterized by severe impairment of platelet responses to adenosine 5’-diphosphate. Blood 1992; 80: 2787-2796
  • 165 Nurden P, Savi P, Heilmann E, Bihour C, Herbert JM, Maffrand JP, Nurden A. An inherited bleeding disorder linked to a defective interaction between ADP and its receptor on platelets. J Clin Invest 1995; 95: 1612-1622
  • 166 Mielke CRJ, Ramos JC, Britten AFH. Aspirin as an antiplatelet agent: Template bleeding time as a monitor of therapy. Amer J Clin Pathol 1973; 59: 236-242
  • 167 Gachet C, Cazenave JP, Ohlmann P, Bouloux C, Defreyn G, Driot F, Maffrand JP. The thienopyridine ticlopidine selectively prevents the inhibitory effects of ADP but not of adrenaline on cAMP levels raised by stimulation of the adenylate cyclase of human platelets by PGE1 . Biochem Pharmacol 1990; 40: 2683-2687
  • 168 Gachet C, Stierle A, Cazenave JP, Ohlmann P, Lanza F, Bouloux C, Maffrand JP. The thienopyridine PCR 4099 selectively inhibits ADP-induced platelet aggregation and fibrinogen binding without modifying the membrane glycoprotein Ilb-IIIa complex in rat and in man. Biochem Pharm 1990; 40: 229-238
  • 169 Defreyn G, Gachet G, Savi P, Driot F, Cazenave JP, Maffrand JP. Ticlopidine and clopidogrel (SR25990C) selectively neutralize ADP inhibition of PGE1-activated platelet adenylate cyclase in rats and rabbits. Thromb Haemost 1991; 65: 186-190
  • 170 Cattaneo M, Akkawat B, Lecchi A, Cimminiello C, Capitanio AM, Mannucci PM. Ticlopidine selectively inhibits human platelet responses to adenosine diphosphate. Thromb Haemost 1991; 66: 694-699
  • 171 Savi P, Combalbert J, Graich C, Rouchon MC, Maffrand JP, Berger Y, Herbert JM. The antiaggregating activity of clopidogrel is due to a metabolic activation by the hepatic cytochrome P450-1A. Thromb Haemost 1994; 72: 313-317
  • 172 Lips JPM, Sixma JJ, Schiphorst ME. The effect of ticlopidine administration to humans on the binding of adenosine diphosphate to blood platelets. Thromb Res 1980; 17: 19-27
  • 173 Mills DCB, Puri RN, Hu CJ, Minnitti C, Grana G, Freedman M, Colman RF, Colman RW. Clopidogrel inhibits the binding of ADP analogues to the receptor mediating inhibition of platelet adenylate cyclase. Atheroscler Thromb 1992; 12: 430-436
  • 174 Savi P, Laplace MC, Herbert JM. Evidence for the existence of two different ADP-binding sites on rat platelets. Thromb Res 1994; 76: 157-169
  • 175 Savi P, Laplace MC, Maffrand JP, Herbert JM. Binding of [3H]-2-methyl-thioADP to rat platelets - effect of clopidogrel and ticlopidine. J Pharm Exp Therap 1994; 269: 772-777
  • 176 Gachet C, Cattaneo M, Ohlmann P, Hechler B, Lecchi A, Chervalier J, Cassel D, Mannucci PM, Cazenave JP. Purinoceptors on blood platelets: further pharmacological and clinical evidence to suggest the presence of two ADP receptors. Br J Haematol 1995; 91: 434-444
  • 177 Altieri DC, Mannucci PM, Capitaneo AM. Binding of fibrinogen to human monocytes. J Clin Invest 1986; 78: 968-976
  • 178 Ventura MA, Thomopoulos P. The effect of ATP and ADP on U-937 promonocyte cell adhesiveness and intracellular Ca++ levels. Nucleosides Nucleotides 1991; 10: 1195-1197
  • 179 Ventura MA, Thomopoulos P. ATP and ADP activate distinct signalling pathways in human promonocyte U-937 cells differentiated with 1,25-di-hydroxy-vitamin D3. Molec Pharmacol 1995; 47: 104-114
  • 180 Kalambakas SA, Robertson FM, O’Connell SM, Sinha S, Vishnupad K, Karp GI. Adenosine diphosphate stimulation of cultured hematopoietic cell lines. Blood 1993; 81: 2652-2657
  • 181 Vittet D, Mathieu MN, Launay JM, Chevillard C. Platelet receptor expression on three human megakaryoblast-like cell lines. Exp Hematol 1992; 20: 1129-1134
  • 182 Shi XP, Yin KC, Gardell SJ. Human erythroleukemic (HEL) cells express a platelet P2T-like ADP receptor. Thromb Res 1995; 77: 235-247
  • 183 Akbar GKM, Dasari VR, Sheth S, Mills DCB, Kunapuli SP. Characterization of P2 purinergic receptors on human erythroleukemia cells. J Receptor Signal Transduction Res 1996 in press
  • 184 Akaike N, Uneyama H. ATP-induced K+ current oscillation in megakaryocytes: a unique purinoceptor. News Physiol Sci 1994; 9: 49-53
  • 185 Uneyama H, Uneyama C, Ebihara S, Akaike N. Suramin and reactive blue 2 are antagonists for a newly identified purinoceptor on rat megakaryocytes. Brit J Pharm 1994; 111: 245-249
  • 186 Biffen M, Alexander DR. Mobilization of intracellular Ca++ by adenine nucleotides in human T-leukaemia cells: evidence for ADP-specific and P2Y -purinergic receptors. Biochem J 1994; 304: 769-774
  • 187 Murgo AJ, Contrera JC, Sistare FD. K562 leukemia cells express P2T (adenosine diphosphate) purinergic receptors. J Pharm Exp Therap 1992; 261: 580-585
  • 188 Murgo AJ, Contrera JC, Sistare FD. Evidence for separate calcium-signaling P2T and P2U purinoceptors in human megakaryocytic Dami cells. Blood 1994; 83: 1258-1267
  • 189 Savi P, Troussard A, Herbert JM. Characterization of specific binding sites for [3H]2-MeS-ADP on megakaryocytoblastic cell lines in culture. Biochem Pharmacol 1994; 48: 83-86
  • 190 Greco N, Jamieson GA. Functional expression of a platelet-type ADP receptor in xenopus oocytes. Thromb Haemost 1993; 69: 1340
  • 191 Pianet I, Merle M, Labouesse J. ADP and, indirectly, ATP are potent inhibitors of cAMP production in intact isoproterenol-stimulated C6 glioma cells. Biochem Biophys Res Comm 1989; 1163: 1150-1157
  • 192 Valens H, Merle M, Labouesse J. Pre-steady state study of β-adrenergic and purinergic receptor interaction in C6 cell membranes: undelayed balance between positive and negative coupling to adenylyl cyclase. Molec Pharm 1992; 42: 1033-1041
  • 193 Frelin C, Breittmayer JP, Vigne P. ADP induces inositol phosphate-independent intracellular Ca2+ mobilization in brain capillary endothelial cells. J Biol Chem 1993; 268: 8787-8792
  • 194 Feolde E, Vigne P, Breittmayer JP, Frelin C. ATP, a partial agonist of atypical P2y purinoceptors in rat brain capillary endothelial cells. Brit J Pharmacol 1995; 115: 1199-1203
  • 195 Green AK, Cobbold PH, Dixon CJ. Elevated intracellular cyclic AMP exerts different modulatory effects on cytosolic free Ca2+ oscillations induced by ADP and ATP in single rat hepatocytes. Biochem J 1994; 302: 949-955
  • 196 Dixon CJ, Cobbold PH, Green AK. Actions of ADP, but not ATP, on cytosolic free Ca++ in single rat hepatocytes mimicked by 2-methylthioATP. Brit J Pharmacol 1995; 116: 1979-1984
  • 197 Cooper DMF, Rodbell M. ADP is a potent inhibitor of human platelet plasma membrane adenylate cyclase. Nature 1979; 282: 517-518
  • 198 Mellwig KP, Jakobs HK. Inhibition of platelet adenylate cyclase by ADP. Thromb Res 1980; 18: 7-17
  • 199 Motulsky HJ, Insell PA. ADP- and epinephrine-elicited release of [3H]guanylimidodiphosphate from platelet membranes. FEBS Lett 1983; 164: 13-16
  • 200 Gachet C, Cazenave J-P, Ohlmann P, Hilfe G, Wieland T, Jacobs KH. ADP receptor-induced activation of guanine-nucleotide-binding proteins in human platelet membranes. Eur J Biochem 1992; 207: 259-263
  • 201 Gachet C, Savi P, Ohlmann P, Maffrand JP, Jacobs KH, Cazenave JP. ADP receptor induced activation of guanine nucleotide binding proteins in rat platelet membranes - an effect selectively blocked by the thienopyri-dine clopidogrel. Thromb Haemost 1992; 68: 79-83
  • 202 Simonds WF, Goldsmith PK, Codina J, Unson CG, Spiegel AM. Gi2 mediates α2-adrenergic inhibition of adenylyl cyclase in platelet membranes: in situ identification with Ga C-terminal antibodies. Proc Natl Acad Sci USA 1989; 86: 7809-7813
  • 203 Offermanns S, Laugwitz K-L, Spicher K, Schulz G. G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. PNAS 1994; 91: 504-508
  • 204 Brass LF, Hoxie JA, Manning DR. Signalling through G-protein-coupled receptors during platelet activation. Thromb Haemost 1993; 70: 217-223
  • 205 Ohlmann P, Laugwitz KL, Nuernberg B, Spicher K, Schultz G, Cazenave JP, Gachet C. The human platelet ADP receptor activates Gi2 proteins. Biochem J 1995; 312: 775-779
  • 206 Wieland T, Ronzani M, Jakobs KH. Stimulation and inhibition of human platelet adenylylcyclase by thiophosphorylated transducin β,γ-subunits. J Biol Chem 1992; 267: 20791-2079
  • 207 Cotecchia S, Kobilka BK, Daniel KW, Nolan RD, Lapetina EY, Caron MG, Lefkowitz R, Regan JW. Multiple second messenger pathways of a-adrenergic receptor subtypes expressed in eukaryotic cells. J Biol Chem 1990; 265: 63-69
  • 208 Hung DT, Wong YH, Vu T-KH, Coughlin SR. The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phos-phoinositide hydrolysis and inhibit adenylyl cyclase. J Biol Chem 1992; 267: 20831-20834
  • 209 Salzman EW. Cyclic AMP in platelet function. New Engl J Med 1972; 286: 358-363
  • 210 Haslam RJ, Davidson MML, Desjardins JV. Inhibition of adenylate cyclase by adenosine analogues in preparations of broken and intact human platelets. Evidence for the unidirectional control of platelet function by cyclic AMP. Biochem J 1978; 176: 83-95
  • 211 Cusack N, Hourani SMO. Differential inhibition by adenosine or by prostaglandin E1 of human platelet aggregation induced by adenosine-5’O-(1 -thiodiphosphate) and adenosine-5’0-(2-thiodiphosphate). Brit J Pharmacol 1982; 75: 257-259
  • 212 Hourani SMO, Welford LA, Cusack NJ. 2MeS-AMP-PCP and human platelets: implications for the role of adenylate cyclase in ADP-induced aggregation?. Brit J Pharm 1986; 87: 84
  • 213 Daniel JL, Molish IR, Holmsen H. Myosin phosphorylation in intact platelets. J Biol Chem 1981; 256: 7510-7514
  • 214 Carty DJ, Freas DL, Gear ARL. ADP causes subsecond changes in protein phosphorylation of platelets. Blood 1987; 70: 511-515
  • 215 Feinberg H, Sandler WC, Scorer M, LeBreton GC, Grossman B, Bom GVR. Movement of sodium into platelets induced by ADP. Biochim Biophys Acta 1977; 470: 317-324
  • 216 Sage SO, Rink TJ, Mahout-Smith MP. Resting and ADP-evoked changes in cytosolic free sodium concentration in human platelets loaded with the indicator SBFI. J Physiol 1991; 441: 559-573
  • 217 Siffert W, Siffert G, Schied P, Akkerman JWN. Na+/H+ exchange modulates Ca mobilization in human platelets stimulated by ADP and the thromboxane mimetic, U44619. J Biol Chem 1990; 264: 719-712
  • 218 Siffert W. Regulation of platelet function by sodium-hydrogen exchange. Cardiovasc Res 1995; 29: 160-166
  • 219 Mills DCB. Changes in the adenylate energy charge in human blood platelets induced by adenosine diphosphate. Nature New Biology 1973; 243: 220-222
  • 220 Mills DCB. Initial biochemical responses of platelets to stimulation. In: Biochemistry and Pharmacology of Platelets Ciba Foundation Symposia Vol. 35. Amsterdam: Elsevier/Excerpta Medica North Holland: 1975: 153-173
  • 221 Daniel JL, Dangelmaier CA, Selak M, Smith JB. ADP stimulates IP3 formation in human platelets. FEBS Lett 1986; 206: 299-303
  • 222 Fisher GL, Bakshian S, Baldassare JJ. Activation of human platelets by ADP causes a rapid rise in cytosolic free calcium without hydrolysis of phosphatidylinositol-4,5-bisphosphate. Biochem Biophys Res Comm 1985; 129: 958-959
  • 223 Vickers JD, Kinlough-Rathbone RL, Packham MA, Mustard JF. Inositol phospholipid metabolism in human platelets stimulated by ADP. Eur J Biochem 1990; 193: 521-528
  • 224 Raha S, Jones GD, Gear ARL. Sub-second oscillations of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate during platelet activation by ADP and thrombin: lack of correlation with calcium kinetics. Biochem J 1993; 292: 643-646
  • 225 Packham MA, Livne AA, Ruben DH, Rand ML. Activation of phospholipase C and protein kinase C has little involvement in ADP-induced primary aggregation of human platelets: effects of diacylglycerols, the dia-cylglycerol kinase inhibitor R59022, staurosporine and okadaic acid. Biochem J 1993; 290: 849-856
  • 226 Lalau Keraly C, Vickers JD, Kinlough-Rathbone RL, Mustard JF. Involvement of phosphoinositide metabolism in potentiation by adrenaline of ADP-induced aggregation of rabbit platelets. Biochem J 1987; 242: 841-847
  • 227 Rozenberg MC, Holmsen H. Adenine nucleotide metabolism of blood platelets IV. Platelet responses to exogenous ATP and ADP. Biochim Biophys Acta 1968; 157: 280-288
  • 228 Hallam TJ, Ruggles PA, Scrutton MC, Wallis RB. Desensitisation in human and rabbit platelets. Thromb Haemost 1982; 47: 278-284
  • 229 Saito Y, Imada T, Shimada H, Kikuchi T, Suzuki H, Yamazaki H, Inada Y. Agonist-specific desensitization of shape change of platelets. Thromb Res 1984; 35: 689-695
  • 230 Zawilska KM, Bom GVR, Begent N. Effect of ADP-utilizing enzymes on the arterial bleeding time in rats and rabbits. Brit J Haematol 1982; 50: 317-325
  • 231 McClure MO, Kakkar A, Cusack NJ, Bom GVR. Evidence for dependence of arterial haemostasis on ADP. Proc R Soc B 1988; 234: 255-266
  • 232 Wagner WR, Hubbell JA. ADP receptor antagonists and converting enzyme systems reduce platelet deposition onto collagen. Thromb Haemost 1992; 67: 461-467
  • 233 Yao S-K, Ober JC, McNatt J, Benedict CR, Rosolowsky M, Anderson HV, Cui K, Maffrand JP, Campbell WB, Buja LM. et al. ADP plays an important role in mediating platelet aggregation and cyclic flow variations in vivo in stenosed and endothelium-injured canine arteries. Circul Res 1992; 70: 39-48
  • 234 Maffrand JP, Bemat A, Delebassee D, Defreyn G, Cazenave JP, Gordon JL. ADP plays a key role in thrombogenesis in rats. Thromb Haemost 1988; 59: 225-230
  • 235 Proctor RA, Denlinger LC, Leventhal PS, Daugherty SK, van de Loo JW, Tanke T, Firestein GS, Bertics PJ. Protection of mice from endotoxic death by 2-methylthio-ATP. Proc Natl Acad Sci USA 1994; 91: 6017-6020
  • 236 Seiss W. Molecular mechanisms of platelet activation. Physiol Rev 1989; 69: 58-178
  • 237 Gachet C, Cazenave JP. ADP induced blood platelet activation: a review. Nouv Rev Franc Hematol 1991; 33: 347-358
  • 238 Gough G, Maguire MH, Penglis F. Analogues of adenosine 5’-diphosphate - New platelet aggregators. Influence of purine ring and phosphate chain substitutions on the platelet aggregating potency of adenosine 5’-diphosphate. Mol Pharmacol 1972; 8: 170-177
  • 239 Gough G, Maguire MH, Michal F. 2-chloroadenosine 5’-phosphate and 2-chloroadenosine 5’-diphosphate, pharmacologically active nucleotide analogs. J Med Chem 1969; 12: 494-498
  • 240 Maguire MH, Michal F. Powerful new aggregator of blood platelets -2-chloroadenosine-5’-diphosphate. Nature 1968; 217: 571-573
  • 241 Cusack NJ, Hourani SMO. fects of Rp and Sp diastereoisomers of adenosine 5’-O-(2-thiodiphosphate) on human platelets. Brit J Pharmacol 1981; 73: 409-412
  • 242 Jefferson JR, Hunt JB, Jamieson GA. Facile synthesis of 2-((3-aminopro-pyl)thio)adenosine 5’-diphosphate: a key intermediate for the synthesis of molecular probes of adenosine 5’-diphosphate function. J Med Chem 1987; 30: 2013-2016
  • 243 Stone GL, Singh RK, Horak H, Barton PG. Sulfhydryl analogues of adenosine diphosphate: chemical synthesis and activity as platelet aggregating agents. Canad J Biochem 1976; 54: 529-533
  • 244 Pearce PH, Wright JM, Egan C, Scrutton MC. Interaction of human platelets with the 2,3 dialdehyde and 2,3 dialcohol derivatives of adenosine diphosphate and adenosine triphosphate. Europ J Biochem 1978; 88: 543-554
  • 245 Arunlakshana O, Schild HO. Some quantitative uses of drug antagonists. Brit J Pharmacol 1959; 14: 48-58
  • 246 Gough G, Nobbs DM, Middleton JC, Penglis-Caredes F, Maguire MH. New inhibitors of platelet aggregation. 5’-phosphate, 5’-phosphorothi-oate- and 5’-O sulfamoyl derivatives of 2 substituted adenosine analogues. J Med Chem 1975; 21: 520-525
  • 247 Michal F, Maguire MH, Gough G. 2-Methylthioadenosine 5’-phosphate. A specific inhibitor of platelet aggregation. Nature 1969; 222: 1073-1074
  • 248 Jefferson JR, Harmon JT, Jamieson GA. Identification of high affinity (Kd 0.35 Μmol/I) and low affinity (Kd 7.9 Μmol/1) platelet binding sites for ADP and competition by ADP analogues. Blood 1988; 71: 110-116
  • 249 Grant RA, Zucker MB, McPherson J. ADP-induced inhibition of von Willebrand factor-mediated platelet agglutination. Am J Physiol 1976; 230: 1406-1410
  • 250 Mills DCB, Hunchack K, Karl DW, Kirby EP. Effect of platelet activation on the agglutination of platelets by von Willebrand factor. Mol Pharmacol 1990; 37: 271-277
  • 251 Marguerie GA, Plow EF, Edgington TS. Human platelets possess an inducible and saturable receptor specific for fibrinogen. J Biol Chem 1979; 254: 5357-5363
  • 252 Bennett JS, Villaire G. Exposure of platelet fibrinogen receptors by ADP and epinephrine. J Clin Invest 1979; 63: 1393-1401
  • 253 Macfarlane DE, Gardner S, Lipson C, Mills DCB. Malondialdehyde production by platelets during secondary aggregation. Thromb Haemost 1977; 38: 1002-1009
  • 254 Walsh PN, Mills DCB, White JG. Metabolism and function of human platelets washed by albumin density gradient separation. Brit J Haematol 1977; 36: 285-300
  • 255 Hu CJ, Mills DCB, Walsh PN. Agonist concentration dependent exposure of Factor XI on platelets detected by flow cytometry. Circulation 1994; 90: 1396
  • 256 Mills DCB, Robb IA, Roberts GCK. The release of nucleotides, 5-hydrox-ytryptamine and enzymes from human blood platelets during aggregation. J Physiol 1968; 195: 715-729
  • 257 Pengo V, Boschello A, Marzari A, Baca M, Schivazappa L, Dalla Volta S. Adenosine diphosphate (ADP)-induced a-granules release from platelets of native whole blood is reduced by ticlopidine but not by aspirin or dipyridamole. Thromb Haemost 1986; 56: 147-150
  • 258 Kaplan KL. In vitro platelet responses: a granule secretion. In: Platelet Responses and Metabolism Holmsen H. (ed). Boca Raton: CRC Press; 1987: 145-162
  • 259 Gilman AG. Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase. J Clin Invest 1984; 73: 1-4
  • 260 Katada T, Bokock GM, Northup JK, Ui M, Gilman AG. The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and guanine nucleotide-dependent hormonal inhibition. J Biol Chem 1984; 259: 3578-3585
  • 261 Gudermann T, Kalkbrenner F, Schulz G. Diversity and selectivity of receptor-G protein interaction. Ann Rev Pharmacol Toxicol 1996; 36: 429-459
  • 262 Sunahara RK, Dessauer CW, Gilman AG. Complexity and diversity of mammalian adenylyl cyclases. Ann Rev Pharmacol Toxicol 1996; 36: 461-480
  • 263 Exton JH. Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Ann Rev Pharmacol Toxicol 1996; 36: 481-509