Thromb Haemost 1987; 57(03): 337-340
DOI: 10.1055/s-0038-1651129
Original Article
Schattauer GmbH Stuttgart

Platelet Ca2+ Homeostasis: Na+-Ca2+ Exchange in Plasma Membrane Vesicles

Appavoo Rengasamy
The Department of Pharmacology University of Illinois College of Medicine at Chicago, Chicago, IL, USA
,
Soudabeh Soura
The Department of Pharmacology University of Illinois College of Medicine at Chicago, Chicago, IL, USA
,
Harold Feinberg
The Department of Pharmacology University of Illinois College of Medicine at Chicago, Chicago, IL, USA
› Author Affiliations
Further Information

Publication History

Received 02 October 1986

Accepted after revision 26 February 1987

Publication Date:
06 July 2018 (online)

Summary

A vesicular plasma membrane-enriched fraction obtained from human platelets exhibited 45Ca2+ uptake in exchange for intravesicular Na+. The rate of Ca2+ uptake was linear up to 4 sec. The apparent Km for Ca2+ was 22 pM and the Vmax 280 pmol/mg/ sec. Ca2+ efflux from Ca2+ loaded vesicles was obtained upon dilution into a NaCl but not a KC1 medium. The extent of Ca2+uptake was monotonically increased as the pH increased from 6 to 9. Na+-Ca2+ exchange was shown to be electrogenic. Ca2+ uptake was distinguished from binding by the induction of Ca2+ release after A23187 addition. These findings support a role for Na+-Ca2+ exchange in human platelet Ca2+ transport.

 
  • References

  • 1 Reeves JP, Sutko JL. Sodium-calcium ion exchange in cardiac membrane vesicles. Proc Natl Acad Sci USA 1979; 76: 590-594
  • 2 Caroni P, Reinlib L, Carafoli E. Charge movements during the Na+-Ca2+ exchange in heart sarcolemmal vesicles. Proc Natl Acad Sci USA 1980; 77: 6354-6358
  • 3 Philipson KD, Nishimuto AY. Na+-Ca2+ exchange is affected by membrane potential in cardiac sarcolemmal vesicles. J Biol Chem 1980; 255: 6880-6882
  • 4 Gill DL, Chueh S-H, Noel MW, Ueda T. Orientation of synaptic plasma membrane vesicles containing calcium pump and sodium-calcium exchange activities. Biochim Biophys Acta 1986; 856: 165-173
  • 5 Kreiger-Brauer H, Gratzl M. Uptake of Ca2+ by isolated secretory vesicles from adrenal medulla. Biochim Biophys Acta 1982; 691: 61-70
  • 6 Barber AJ, Pepper DS, Jamieson GA. A comparison of methods for platelet lysis and the isolation of platelet membranes. Thrombos Diathes Haemorrh 1971; 26: 38-57
  • 7 Sixma JJ, Lips J PM. Isolation of platelet membranes: A review. Thromb Haemostas 1978; 39: 328-337
  • 8 Mauco G, Fauvel J, Chap H, Douste-Blazy L. Studies on enzymes related to diacylglycerol production in activated platelets II. Subcellular distribution, enzymatic properties and positional specificity of diacylglycerol- and monoacylglycerol-lipases. Biochim Biophys Acta 1984; 796: 169-177
  • 9 Nakao T, Tashima Y, Nagano K, Nakao M. Highly specific sodium-potassium-activated adenosine triphosphatase from various tissues of rabbit. Biochem Biophys Res Commun 1965; 19: 755-758
  • 10 Anner B, Moosmayer M. Rapid determination of inorganic phosphate in biological systems by a highly sensitive photometric method. Anal Biochem 1975; 65: 305-309
  • 11 Tolbert NE. Isolation of subcellular organelles of metabolism of isopycnic sucrose gradients. Methods Enzymol 1974; 31: 734-746
  • 12 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254
  • 13 Fauvel J, Chap H, Rogues V, Levy-Toledano S, Douste-Blazy L. Biochemical characterization of plasma membranes and intracellular membranes isolated from human platelets using Percoll gradients. Biochim Biophys Acta 1986; 856: 155-164
  • 14 Lamers J MJ, Stinis JT. An electrogenic Na+-Ca2+ antiporter in addition to the Ca2+ pump in cardiac sarcolemma. Biochim Biophys Acta 1981; 640: 521-534
  • 15 Grover AK, Kwan CY, Daniel EE. Na-Ca exchange in rat myometrium membrane vesicles highly enriched in plasma membranes. Amer J Physiol 1981; 240: C175-82
  • 16 Reeves JP, Sutko JL. Sodium-calcium exchange activity generates a current in cardiac membrane vesicles. Science 1980; 208: 1461-1464
  • 17 Seiler SM, Cragoe Jr EJ, Jones LR. Demonstration of a Na+/H+ exchange activity in purified canine cardiac sarcolemmal vesicles. J Biol Chem 1985; 260: 4869-4876
  • 18 Philipson KD. Sodium-calcium exchange in plasma membrane vesicles. Ann Rev Physiol 1985; 47: 561-571
  • 19 Reeves JP. The sarcolemmal sodium-calcium exchange system. In Current Topics in Membrane and Transport. Shammo AE. (ed) pp 77-127 Academic Press; New York: 1985
  • 20 Reeves JP, Bailey CA, Hale CC. Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. J Biol Chem 1986; 261: 4948-4955
  • 21 Reeves JP, Sutko JL. Competitive interactions of sodium and calcium with the sodium-calcium exchange system of cardiac sarcolemmal vesicles. J Biol Chem 1983; 258: 3178-3182
  • 22 Philipson KD, Nishimuto AY. ATP-dependent Na+ transport in cardiac sarcolemmal vesicles. Biochim Biophys Acta 1983; 733: 133-141
  • 23 Gilbert JR, Meissner G. Sodium-calcium ion exchange in skeletal muscle sarcolemmal vesicles. J Memb Biol 1982; 69: 77-84
  • 24 Schellenberg GD, Swanson PD. Sodium-dependent and calcium-dependent calcium transport by rat brain microsomes. Biochim Biophys Acta 1981; 648: 13-27
  • 25 Bers DM, Philipson KD, Nishimuto AY. Sodium-calcium exchange and sidedness of isolated cardiac sarcolemmal vesicles. Biochim Biophys Acta 1980; 601: 358-371
  • 26 Ledvora RF, Hagyvary C. Dependence of Na+-Ca2+ exchange and Ca2+-Ca2+ exchange on monovalent cations. Biochim Biophys Acta 1983; 729: 123-136
  • 27 Schatzmann HJ, Vincenzi FF. Calcium movements across the membrane of human red cells. J Physiol (London) 1969; 201: 369-395
  • 28 Carafoli E, Zurini M. The Ca2+-pumping ATPase of plasma membranes. Purification, reconstitution and properties. Biochim Biophys Acta 1982; 683: 279-301
  • 29 Blayney L. Cardiac sarcoplasmic reticulum. In cardiac Metabolism. Drake-Holland AJ, Noble M IM. (eds) pp 19-47 John Wiley and Sons Ltd; New York: 1983
  • 30 Wuytack F, Raemaekers L, Casteels R. The Ca2+-transport ATPases in smooth muscle. Experientia 1985; 41: 900-905
  • 31 Reuter H, Sietz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol (London) 1968; 195: 451-470
  • 32 Kaser-Glanzmann R, Jakabova M, George JN, Luscher EF. Stimulation of calcium uptake in platelet membrane vesicles by adenosine 3’,5’-cyclic monophosphate and protein kinase. Biochim Biophys Acta 1977; 466: 429-440
  • 33 Kaser-Glanzmann R, Jakabova M, George JN, Luscher EF. Further characterization of calcium-accumulating vesicles from human blood platelets. Biochim Biophys Acta 1978; 512: 1-12
  • 34 Menashi S, Davis C, Crawford N. Calcium uptake associated with an intracellular membrane fraction prepared from human blood platelets by high-voltage, freeflow electrophoresis. FEBS Lett 1982; 140: 298-302
  • 35 Menashi S, Authi KS, Carey F, Crawford N. Characterization of calcium-sequestering process associated with human platelet membranes isolated by freeflow electrophoresis. Biochem J 1984; 222: 413-417
  • 36 Dean WL, Sullivan DM. Structural and functional properties of a Ca2+-ATPase from human platelets. J Biol Chem 1982; 257: 14390-14394
  • 37 Brass LF. Ca2+ homeostasis in unstimulated platelets. J Biol Chem 1984; 259: 12563-12570
  • 38 Brass LF. Ca2+ transport across the platelet plasma membrane. A role for membrane glycoproteins 11B and 111A. J Biol Chem 1985; 260: 2231-2236