Thromb Haemost 1965; 14(03/04): 508-518
DOI: 10.1055/s-0038-1654887
Originalarbeiten — Original Articles — Travaux Originaux
Schattauer GmbH

Effects of Bradykinin on Coagulation and Fibrinolysis Study in Vitro and in Vivo[*]

G. G Neri Serneri
1   Istituto di Semeiotica Medica Universita’ di Firenze (Direttore: Prof. U. Teodori)
,
P. L Rossi Ferrini
1   Istituto di Semeiotica Medica Universita’ di Firenze (Direttore: Prof. U. Teodori)
,
P Paoletti
1   Istituto di Semeiotica Medica Universita’ di Firenze (Direttore: Prof. U. Teodori)
,
A Panti
1   Istituto di Semeiotica Medica Universita’ di Firenze (Direttore: Prof. U. Teodori)
,
G D’Ayala Valva
1   Istituto di Semeiotica Medica Universita’ di Firenze (Direttore: Prof. U. Teodori)
› Author Affiliations
Further Information

Publication History

Publication Date:
19 September 2018 (online)

Summary

The effects of bradykinin on coagulation and fibrinolysis have been studied both “in vitro” and “in vivo” in man. “In vitro” bradykinin employed at different concentrations does not affect the coagulation and fibrinolysis processes in any appreciable way. Bradykinin, intraarterially injected in man in the dose of 10 y, does not modify coagulation studied both with global investigations (thrombelastogram, recalcification time) and with analytical researches (Quick’s time, activation test of intrinsic thromboplastin, thrombin generation test and thromboplastin test, thrombin time, determination of antithrombin II and III). Bradykinin instead produces an activation of fibrinolysis both in the thrombelastographic investigation and in the lysis time of euglobulins. The decrease in the activity of the proactivator and of plasminogen supports our view that bradykinin produces an activation of the fibrinolytic system by liberating tissue kinases which act on the proactivator. The authors have discussed the physiological and physiopathological significance of the observed findings.

* Reported to the Bradykinin Symposium held in Florence on July 16th, 1962.


 
  • References

  • 1 Alagille D, Soulier J. P. Action des enzymes proteolytiques sur le sang total “in vitro”. Modifications des facteurs de coagulation et du complément. Sem. Hop. 32: 355 1956;
  • 2 Alkjaersig N, Fletcher A. P, Slierry S. Epsilon-aminocaproic acid, an inhibitor of plasminogen activator. J. biol. Chem. 234: 832 1959;
  • 3 Alkjaersig N, Fletcher A. P, Sherry S. Pathogenesis of the coagulation defect developing during pathological plasma proteolytic (fibrinolytic) states. II - The significance, mechanism and consequences of defective fibrin polymerization. J. clin. Invest 41: 917 1962;
  • 4 Astrup T, Ollendorf P. Estimation of thromboplastin activation in plasma. Scand. J. clin. Lab. Inv. 13: 377 1961;
  • 5 Beraldo W. T. Formation of bradykinin in anaphylactic and peptone shock. Amer. J. Physiol. 163: 283 1950;
  • 6 Biggs R, Douglas A. S. The thromboplastin generation test. J. clin. Path. 06: 23 (1953b):
  • 7 Blix S. The proactivator of the fibrinolytic system in human plasma. The quantitative determination and its clinical application. Acta med. scand. 171: 83 1962;
  • 8 Donaldson W. H. Effects of plasmin “in vitro” on clotting factors in plasma. J. Lab. clin. Med. 56: 644 1960;
  • 9 Fletcher A. P, Alkjaersig N, Sherry S. Pathogenesis of the haemorrhagic diathesis developing during “fibrinolytic” states. The significance of defective fibrin polymerization. J. clin. Invest 38: 1005 1959;
  • 10 Fletcher A. P, Alkjaersig N, Sherry S. Pathogenesis of the coagulation defect developing during pathological plasma proteolytic (fibrinolytic) states. I - The significance of fibrinogen proteolysis and circulating fibrinogen breakdown products. J. clin. Invest 41: 896 1962;
  • 11 Hilton S. M. In: Polypeptides which effect smooth muscles and blood vessels. Schacter M. Ed. Pergamon press; London: 1960
  • 12 Iatridis S. G, Ferguson J. H. Effect of surface and Hageman factor on the endogenous or spontaneous activation of the fibrinolytic system. Thrombos. Diathes. haemorrh. (Stuttg) 06: 411 1961;
  • 13 Jobling J. W, Petersen W. Mechanism of anaphylatoxin formation. XV - Studies on ferment action. J. exp. Med. 20: 37 1914;
  • 14 Jürgens J. Neue Bestimmungsmethoden und Bedeutung der Antithrombine für die Klinik. Klin. Wschr. 35: 303 1957;
  • 15 Lewis G. P. Formation of plasmakinins by plasmin. J. Physiol. (Lond) 140: 285 1958;
  • 16 Lewis G. P. Plasmakinin forming enzyme in boody fluids and tissues. J. Physiol. (Lond) 147: 458 1959;
  • 17 Lewis G. P. Active polypeptides derived from plasma proteins. Physiol. Rev. 40: 647 1960;
  • 18 Milstone H. A factor in normal human blood which participates in streptococcal fibrinolysis. J. Immunol. 42: 109 1941;
  • 19 Müllertz S. Formation and properties of the activator of plasminogen and of human and bovine plasmin. Biochem. J. 61: 424 1955;
  • 20 Pitney W. R, Dacie J. V. A simple method of studying the generation of thrombin recalcified plasma. J. clin. Path. 06: 9 1953;
  • 21 Remmert L. F, Cohen P. P. Partial purification and properties of a proteolytic enzyme of human serum. J. biol. Chem. 181: 431 1949;
  • 22 Rocha e Silva M, Andreade S. O, Teixeira R. M. Fibrinolysis in peptone and anaphylactic shock in the dog. Nature 157: 801 1946;
  • 23 Rocha e Silva M. Bradykinin, occurrence and properties. In: Polypeptides which stimulate smooth muscles. 20 Gaddum J. H. Livingstone Edinburgh; 1955
  • 24 Schacter M. (Editor): Kallidin, Bradykinin and related substances. In: Polypeptides which affect smooth muscles and blood vessels. 197 Proceedings of a Symposium held in London 1959. Pergamon Press; London: 1960
  • 25 Sherry S, Lindemeyer R. I, Fletcher A. P, Alkjaersig N. Studies on enhanced fibrinolytic activity in man. J. clin. Invest. 38: 810 1959;
  • 26 Sherry S. Hemostatic mechanism and proteolysis in shock. Fed. Proc., suppl 09: 209 1961;
  • 27 Stürmer E, Gerletti A. Bradykinin. Amer. Heart J. 62: 149 1961;
  • 28 Tagnon H. J, Levenson S. M, Davidson C. S, Taylor FHL. The occurrence of fibrinolysis in shock, with observations on the prothrombin time and plasma fibrinogen during haemorrhagic shock. Amer. J. med. Sci. 211: 88 1946;
  • 29 Turpin R, Stefanini M. The nature and mechanism of the hemostatic breakdown in course of experimental shock. J. clin. Invest 38: 53 1959;
  • 30 Ungar G. Release of proteolytic enzyme in anaphylactic and peptone shock. Lancet I: 708 1947;
  • 31 Ungar G, Mist S. M. Observation on the release of serum fibrinolysin by specific antigen, peptone and certain polysaccharides. J. exp. Med. 90: 39 1949;
  • 32 Ungar G, Haysashi H. Enzymatic mechanism in allergy. Ann. Allergy 16: 542 1958;
  • 33 Ungar G, Yamura T, Isola J. B, Kobrin S. Further studies in the role of protease in the allergic reaction. J. exp. Med. 113: 359 1961;