Thrombosis and Haemostasis, Table of Contents Thromb Haemost 1997; 78(01): 101-107DOI: 10.1055/s-0038-1657509 Understanding the initiation of blood coagulation Schattauer GmbH Stuttgart Contact Activation: A Revision Alvin H Schmaier Department of Internal Medicine, University of Michigan, Ann Arbor, Ml, USA › Author Affiliations Recommend Article Abstract PDF Download Buy Article PDF (1306 kb) References References 1 Roche e Silva M, Beraldo WT, Rosenfeld G. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am J Physiol 1949; 150: 261-273 2 Colman RW, Bagdasarian A, Talamo RC, Scott CF, Seavey M, Guimaraes JA, Pierce JV, Kaplan AP, Williams trait. Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hageman factor-dependent pathways. J Clin Invest 1975; 56: 1650-1662 3 Wuepper KD, Miller DR, Lacombe MJ, Flaujeac trait. Deficiency of human plasma kininogen. J Clin Invest 1975; 56: 1663-1672 4 Saito H, Ratnoff OD, Waldmann R, Abraham JP, Fitzgerald trait. Deficiency of a hitherto unrecognized agent, Fitzgerald factor, participating in surface mediated reactions of clotting, fibrinolysis, generation of kinins, and the property of diluted plasma enhancing vascular permeability (PF/DIL). J Clin Invest 1975; 55: 1082-1089 5 Rapaport SI, Rao LVM. The tissue factor pathway: how it has become a “Prima Ballerina”. Thromb. Haemost 1995; 74: 07-17 6 Gailiani D, Broze Jr GJ. Factor XI activation in a revised model of blood coagulation. Science 1991; 253: 909-912 7 Ishiguro H, Higashiyama S, Ohkubo I, Sasaki M. Heavy chain of human high molecular weight and low molecular weight kininogen binds calcium ion. Biochemistry 1987; 26: 7450-7458 8 Croxatto HR, Boric MP, Roblero J, Albertini R, Silva R. Digestive process and regulation of renal excretory function. Pepsanurin and prokinins inhibitors of diuresis mediated by atrial natriuretic peptide. Rev Med Chile 1995; 122: 1162-1172 9 Salvesen G, Parkes C, Abrahamson M, Grubb A, Barrett AJ. Human low-Mr kininogen contains three copies of a cystatin sequence that are divergent in structure and in inhibitory activity for cysteine proteinases. Biochem J 1986; 234: 429-434 10 Schmaier AH, Bradford H, Silver LD, Farber A, Scott CF, Schutsky D, Colman RW. High molecular weight kininogen is an inhibitor of platelet calpain. J Clin Invest 1986; 77: 1565-1573 11 Bradford HN, Schmaier AH, Colman RW. Kinetics of inhibition of platelet calpain II by human kininogens. Biochem J 1990; 270: 83-90 12 Herwald H, Hasan AAK, Godovac-Zimmermann J, Schmaier AH, Muller-Esterl W. Identification of an endothelial cell binding site on kininogen domain D3. J Biol Chem 21995 70: 14634-14642 13 Meloni FJ, Schmaier AH. Low molecular weight kininogen binds to platelets to modulate thrombin-induced platelet activation. J Biol Chem 1991; 266: 6786-6794 14 Jiang YP, Muller Esterl W, Schmaier AH. Domain 3 of kininogens contains a cell-binding site and a site that modifies thrombin activation of platelets. J Biol Chem 1992; 267: 3712-3717 15 Hasan AAK, Amenta S, Schmaier AH. Bradykinin and its metabolite, Arg-Pro-Pro-Gly-Phe, are selective inhibitors of α-thrombin-induced platelet activation. Circulation 1996; 94: 517-528 16 Tayeh MA, Olson ST, Shore JD. Surface-induced alterations in the kinetic pathway for cleavage of human high molecular weight kininogen by plasma kallikrein. J Biol Chem 1994; 269: 16318-16325 17 Hasan AA, Zhang J, Samuel M, Schmaier AH. Conformational changes in low molecular weight kininogen alters its ability to bind to endothelial cells. Thromb Haemost 1995; 74: 1088-1095 18 Crutchley DJ, Ryan JW, Ryan US, Fisher GH. Bradykinin-induced release of prostacyclin and thromboxanes from bovine pulmonary artery endothelial cells. Studies with lower homologs and calcium antagonists. Biochim Biophys Acta 1983; 751: 099-107 19 Hong SL. Effect of bradykinin and thrombin on prostacyclin synthesis in endothelial cells from calf and pig aorta and human umbilical cord vein. Thromb Res 1980; 18: 787-796 20 Holland JA, Pritchard KA, Pappolla MA, Wolin MS, Rogers NJ, Stemerman MB. Bradykinin induces superoxide anion release from human endothelial cells. J Cell Physiol 1990; 143: 21-25 21 Smith D, Gilbert M, Owen WG. Tissue plasminogen activator release in vivo in response to vasoactive agents. Blood 1983; 66: 835-839 22 Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biologic activity of endothelium-derived relaxing factor. Nature 1987; 327: 524-526 23 Nakashima M, Mombouli JV, Taylor AA, Vanhoutte PM. Endothelium-dependent hyperpolarization caused by bradykinin in human coronary arteries. J Clin Invest 1993; 92: 2867-2871 24 Boulanger C, Schini VB, Moncada S, Vanhoutte PM. Stimulation of cyclic GMP production in cultured endothelial cells of the pig by bradykinin, adenosine diphosphate, calcium ionophore A23187 and nitric oxide. Br J Pharmacol 1990; 101: 152-156 25 Busse R, Mulsch A. Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS Lett 1990; 275: 87-90 26 Dixon BS, Breckon R, Fortune J, Vavrek RJ, Stewart JM, Marzec-Calvert R, Linas SL. Effects of kinins on cultured arterial smooth muscle. Am J Physiol 1990; 258: C299-C308 27 Hasan AAK, Cines DB, Zhang J, Schmaier AH. The carboxyl terminus of bradykinin and amino terminus of the light chain of kininogens comprise an endothelial cell binding domain. J Biol Chem 1994; 269: 31822-31830 28 Weisel JW, Nagaswami C, Woodhead JL, DeLa Cadena RA, Page JD, Colman RW. The shape of high molecular weight kininogen: Organization into structural domains, changes with activation, and interactions with prekallikrein, as determined by electron microscopy. J Biol Chem 1994; 269: 10100-10106 29 Hasan AAK, Cines DB, Ngaiza JR, Jaffe EA, Schmaier AH. High-molecular-weight kininogen is exclusively membrane bound on endothelial cells to influence activation of vascular endothelium. Blood 1995; 85: 3134-3143 30 Zini JM, Schmaier AH, Cines DB. Bradykinin regulates the expression of kininogen binding sites on endothelial cells. Blood 1993; 81: 2936-2946 31 Meloni FJ, Gustafson EJ, Schmaier AH. High molecular weight kininogen binds to platelets by its heavy and light chains and when bound has altered susceptibility to kallikrein cleavage. Blood 1992; 79: 1233-1244 32 Hasan AAK, Cines DB, Herwald H, Schmaier AH, Muller-Esterl W. Mapping the cell binding site on high molecular weight kininogen domain 5. J Biol Chem 1995; 270: 19256-19261 33 DeLa CadenaRA, Colman RW. The sequence HGLGHGHEQQHGLGHGH in the light chain of high molecular weight kininogen serves as a primary structural feature for zinc-dependent binding to an anionic surface. Prot Sci 1992; 01: 151-160 34 Ben NasrAB, Herwald H, Muller-Esterl W, Bjorck L. Human kininogens interact with M protein, a bacterial surface protein and virulence determinant. Biochem J 1995; 305: 173-180 35 Tait JF, Fujikawa K. Identification of the binding site for plasma prekallikrein in human high molecular weight kininogen. A region from residues 185 to 224 of the kininogen light chain retains full binding activity. J Biol Chem 1986; 261: 15396-15401 36 Tait JF, Fujikawa K. Primary structure requirements for the binding of human high molecular weight kininogen to plasma prekallikrein and factor XI. J Biol Chem 1987; 262: 11651-11656 37 Schmaier AH, Schutsky D, Farber A, Silver LD, Bradford HN, Colman RW. Determination of the bifunctional properties of high molecular weight kininogen by studies with monoclonal antibodies directed to each of its chains. J Biol Chem 1987; 262: 1405-1411 38 Greengard JS, Heeb MJ, Ersdal E, Walsh PN, Griffin JH. Binding of coagulation factor XI to washed human platelets. Biochemistry 1986; 25: 3884-3890 39 Lenich C, Pannell R, Gurewich V. Assembly and activation of the intrinsic fibrinolytic pathway on the surface of human endothelial cells in culture. Thromb Haemost 1995; 74: 698-703 40 Motta G, Hasan AAK, Cines DB, Schmaier AH. High molecular weight kininogen and prekallikrein assembly on endothelial cells produce plasminogen activation independent of Factor XII. Blood 1995; 86 S 374a (abstract) 41 Greengard JS, Griffin JH. Receptors for high molecular weight kininogen on stimulated washed human platelets. Biochemistry 1984; 23: 6863-6869 42 Wachtfogel YT, DeLa CadenaRA, Kunapuli SP, Rick L, Miller M, Schultze RL, Altieri DC, Edgington TS, Colman RW. High molecular weight kininogen binds to Mac-1 on neutrophils by its heavy chain (domain 3) and its light chain (domain 5). J Biol Chem 1994; 269: 19307-19312 43 Gustafson EJ, Lukasiewicz H, Wachtfogel YT, Norton KJ, Schmaier AH, Niewiarowski S, Colman RW. High molecular weight kininogen inhibits fibrinogen binding to cytoadhesins of neutrophils and platelets. J Cell Biol 1989; 109: 377-389 44 Herwald H, Dedio J, Kellner R, Loos M, Mueller-Esterl W. Isolation and characterization of the kininogen-binding protein p33 from endothelial cells: Identity with the gClq receptor. J Biol Chem 1996; 271: 13040-13047 45 Joseph K, Ghebrehiwet B, Peerschke EIB, Reid KBM, Kaplan AP. Identification of the zinc-dependent endothelial cell binding protein for high molecular weight kininogen and factor XII: Identity with the receptor that binds to the globular “heads” of Clq (gC1q-R). Proc Natl Acad Sci USA 1996; 93: 8552-8557 46 Colman RW, Pixley RA, Najamunnisa S, Yan WY, Wang J, Mazar A, McCrae KR. High molecular weight kininogen binds to the vitronectin binding domain(s) on the endothelial cell receptor. Circulation 1996; 94: 01-42 (abstract) 47 Wei Y, Lukashev M, Simon DI, Bodary SC, Rosenberg S, Doyle MV. Chapman HA: Regulation of integrin function by the urokinase receptor. Science 1996; 273: 1551-1555 48 Hembrough TA, Vasudevan J, Allietta MM, Glass WF II, Gonias SL. A cytokeratin 8-like protein with plasminogen-binding activity is present on the external surface of hepatocytes, HepG2 cells, and breast carcinoma cell line. J Cell Sci 1995; 108: 1071-1082 49 Hembrough TA, Li L, Gonias SL. Cell-surface cytokeratin 8 is the major plasminogen receptor on breast cancer cells and is required for the accelerated activation of cell-associated plasminogen by tissue-type plasminogen activator. J Biol Chem 1996; 271: 25684-25691 50 Ratnoff OD, Busce FJ, Sheon RP. The demise of John Hageman. N Engl J Med 1968; 279: 760-761 51 Colman RW. Contributions of Mayme Williams to the elucidation of the multiple functions of the plasma kininogens. Thromb Haemost 1992; 68: 099-101 52 Goodnough LT, Saito H, Ratnoff OD. Thrombosis or myocardial infarction in congenital clotting factor abnormalities and chronic thrombocytopenias: a report of 21 patients and a review of 50 previously reported cases. [Review]. Medicine (Baltimore) 1983; 62: 248-255 53 Jespersen J, Munkvad S, Pedersen OD, Gram J, Kluft C. Evidence for a role of factor XH-dependent fibrinolysis in cardiovascular diseases. Ann N Y Acad Sci 1992; 667: 454-456 54 Munkvad S, Jespersen J, Gram J, Kluft C. Long-lasting depression of the factor XII-dependent fibrinolytic system in patients with myocardial infarction undergoing thrombolytic therapy with recombinant tissue-type plasminogen activator: a randomized placebo-controlled study. J Am Coll Cardiol 1991; 17: 957-962 55 Schmaier AH, Bradford HN, Lundberg D, Farber A, Colman RW. Membrane expression of platelet calpain. Blood 1990; 75: 1273-1281 56 Saido T, Suzuki H, Yamazaki H, Tanoue K, Suzuki K. In situ capture of m-calpain activation of platelets. J Biol Chem 1993; 268: 7422-7426 57 Coller BS. Effects of tertiary amine local anesthetics on von Willebrand factor-dependent platelet function: alteration of membrane reactivity and degradation of GPIb by a calcium-dependent protease(s). Blood 1982; 60: 731-743 58 Puri RN, Gustafson EJ, Zhou FX, Bradford H, Colman RF, Colman RW. Inhibition of thrombin-induced platelet aggregation by high molecular weight kininogen. Trans Assoc Am Physicians 1987; 100: 232-240 59 Schmaier AH, Meloni FJ, Nawarawong W, Jiang YP. PPACK-thrombin is a noncompetitive inhibitor of alpha-thrombin binding to human platelets. Thromb Res 1992; 67: 479-489 60 Majima M, Sunahara N, Harada Y, Katori M. Detection of the degradation products of bradykinin by enzyme immunoassays as markers for the release of kinin in vivo. Biochem Pharmacol 1993; 45: 559-567 61 Shima C, Majima M, Katori M. A stable metabolite, Arg-Pro-Pro-Gly-Phe, of bradykinin in the degradation pathway in human plasma. Jpn J Pharmacol 1992; 60: 111-119 62 Niewiarowski S, Prou-Wartelle O. Role of the contact factor (Hageman factor) in fibrinolysis. Thromb Diath Haemorrh 1959; 03: 593-598 63 Ichinose A, Fujikawa K, Suyama T. The activation of prourokinase by plasma kallikrein and its inactivation by thrombin. J Biol Chem 1986; 261: 3486-3489 64 Loza JP, Gurewich V, Johnstone M, Pannell R. Platelet-bound prekallikrein promotes pro-urokinase-induced clot lysis: a mechanism for targeting the factor XII dependent intrinsic pathway of fibrinolysis. Thromb Haemost 1994; 71: 347-352 65 Gurewich V, Johnstone M, Loza JP, Pannell R. Pro-urokinase and prekallikrein are both associated with platelets. Implications for the intrinsic pathway of fibrinolysis and for therapeutic thrombolysis. FEBS Lett 1993; 318: 317-321