Thromb Haemost 1997; 78(05): 1305-1315
DOI: 10.1055/s-0038-1657739
Review Article
Schattauer GmbH Stuttgart

Bidirectional Trafficking of Membrane Glycoproteins following Platelet Activation in Suspension

Poquito Nurden
The UMR 5533 CNRS, Laboratoire d'Hémobiologie, Hôpital Cardiologique, Pessac, France
› Author Affiliations
Further Information

Publication History

Received 30 1996

Accepted after resubmission 11 August 1997

Publication Date:
12 July 2018 (online)

 
  • References

  • 1 Nurden AT, Nurden P. A review of the role of platelet membrane glycoproteins in the platelet-vessel wall interaction. Ballieres Clinical Haematology 1993; 06: 653-690
  • 2 Roth GJ. Developing relationships: arterial platelet adhesion, glycoprotein Ib, and leucine-rich glycoproteins. Blood 1991; 77: 5-19
  • 3 White JG. Anatomy and structural organization of the platelet. In: Basic principles and Clinical Practice. Hemostasis and Thrombosis. Colman RW, Hirsh J, Marder VJ, Salzman EW. (eds.) Philadelphia: JB Lippincott; 1994. pp 397-413
  • 4 Morgenstem E, Neumann K, Patscheke H. The exocytosis of human blood platelets. A fast freeze-substitution analysis. Eur J Cell Biol 1987; 43: 273-282
  • 5 Morgenstem E. The formation of compound granules from different types of secretory organelles in human platelets (dense granules and alpha granules). A cryofixation/substitution study using serial sections. Eur J Cell Biol 1995; 43: 273-282
  • 6 Wencel-Drake JD. Platelet secretion and receptor cycling. Blood Cells 1991; 17: 486-495
  • 7 Skaer RJ. Platelet degranulation. In: Platelets in Biology and Pathology 2. Gordon JL. (ed) Elsevier/North-Holland Biomedical Press; 1981. pp 321-348
  • 8 Stenberg PE, Shuman MA, Levine SP, Bainton D. Redistribution of alpha-granules and their contents in thrombin-stimulated platelets. J Cell Biol 1984; 98: 748-760
  • 9 Nurden P, Heilmann E, Paponneau A, Nurden AT. Two-way trafficking of membrane glycoproteins on thrombin-activated human platelets. Sem Hematol 1994; 31: 240-250
  • 10 Kansas GS. Selectins and their ligands: Current concepts and controversies. Blood 1996; 88: 3259-387
  • 11 Metzelaar MJ, Clevers HC. Lysosomal membrane glycoproteins in platelets. Thromb Hemost 1992; 68: 378-382
  • 12 Israels SJ, McMillan EM, Robertson C, Singhroy S, McNicol A. The lysosomal granule membrane protein, Lamp-2, is also present in platelet dense granule membranes. Thromb Haemost 1996; 75: 623-629
  • 13 Berger G, Masse JM, Cramer E. Alpha-granule membrane mirrors the platelet plasma membrane and contains the glycoprotein lb, IX, and V. Blood 1996; 87: 1385-1395
  • 14 Hoxie JA, Ahuja M, Belmonte E, Pizarro S, Parton R, Brass LF. Internalization and recycling of activated thrombin receptors. J Biol Chem 1993; 268: 13756-13763
  • 15 Clemetson KJ, Clemetson JM. Platelet GP Ib-V-IX complex. Structure, function, physiology and pathology. Sem Throm Hemost 1995; 21: 130-136
  • 16 Andrews RK, Lopez JA, Bemdt MC. Molecular mechanisms of platelet adhesion. Int J Biochem Cell Biol 1997; 29: 91-105
  • 17 Yagi M, Edelhoff S, Disteche CH, Roth GJ. Human platelet glycoproteins and IX: mapping of two leucine-rich glycoprotein genes to chromosome 3 and analysis of structures. Biochemistry 1995; 34: 16132-16137
  • 18 Fox JEB. The platelet cytoskeleton. Thromb Haemost 1993; 70: 884-893
  • 19 Cunningham JG, Meyer SC, Fox JEB. The cytoplasmic domain of the α-subumit of glycoprotein (GP) Ib mediates attachment of the entire GP Ib-EX complex to the cytoskeleton and regulates von Willebrand factor-induced changes in cell morphology. J Biol Chem 1996; 271: 11581-11587
  • 20 Moderman PW, Admiraal LG, Sonnenberg A, von demBorne AE. Glycoproteins V and Ib-IX form a noncovalent complex in the platelet membrane. J Biol Chem 1992; 267: 364-369
  • 21 Meyer SC, Fox JEB. Interaction of platelet glycoprotein V with glycoprotein Ib-IX regulates expression of the glycoproteins and binding of von Willebrand factor to glycoprotein Ib-IX in transfected cells. J Biol Chem 1995; 270: 14693-14699
  • 22 Wencel-Drake JD, Plow EF, Kunicki TJ, Woods VL, Keller DM, Ginsberg MH. Localization of internal pools of membrane glycoproteins involved in platelet adhesive responses. Am J Pathol 1986; 124: 324-334
  • 23 Suzuki H, Yamamoto N, Tanoue K, Yamazari H. Glycoprotein Ib distribution on the surface of platelets in resting and activation states: an electron microscopy study. HistochemJ 1987; 19: 125-136
  • 24 Hourdille P, Heilmann E, Combrié R, Winckler J, Clemetson KJ, Nurden AT. Thrombin induces a redistribution of glycoprotein Ib-IX complexes within the membrane systems of activated human platelets. Blood 1990; 76: 1503-1513
  • 25 Grant RA, Zucker MB, McPherson J. ADP-induced inhibition of von Willebrand factor-mediated platelet agglutination. Am J Physiol 1976; 230: 1406-1410
  • 26 George JN, Pickett EB, Saucerman S, McEver RP, Kunicki TJ, Kieffer N, Newman PJ. Platelet surface glycoproteins. Studies on resting and activated platelets and platelet membrane microparticles in normal subjects, and observations in patients during adult respiratory distress syndrome and cardiac surgery. J Clin Invest 1986; 78: 340-348
  • 27 Michelson AD, Barnard MR. Thrombin-induced changes in platelet membrane glycoproteins Ib, IX and IIb-IIIa complex. Blood 1987; 70: 1673-1678
  • 28 Nurden AT, Cazes E, Bihour C, Humbert M, Combrie R, Paponneau A, Winckler J, Nurden P. onfirmation that GP Ib-IX complexes have a reduced surface distribution on platelets activated by thrombin and TRAP-14-mer peptide. Br J Haematol 1995; 90: 645-654
  • 29 Michelson AD. Flow cytometry: A clinical test of platelet function. Blood 1996; 87: 4925-4936
  • 30 Lu H, Menashi S, Garcia I, Martin-Cramer E, Li H, Tenza D, de RomeufC, Soria J, Soria C. Reversibility of thrombin-induced decrease in platelet glycoprotein Ib function. Br J Haematol 1993; 85: 116-123
  • 31 Michelson AD, Benoit SE, Furman MI, Barnard MR, Nurden P, Nurden AT. The platelet surface expression of glycoprotein V is regulated by two independent mechanisms: proteolysis and a reversible cytoskeletal-mediated redistribution of the surface-connected canalicular system. Blood 1996; 87: 1396-1408
  • 32 Escolar G, Clemetson K, White JG. Persistence of mobile receptors on surface and suspension-activated platelets. J Lab Clin Med 1994; 123: 536-546
  • 33 White JG, Krumwiede MD, Cocking-Johnson D, Rao GHR, Escolar G. Retention of glycoprotein Ib/IX receptors on external surfaces of thrombin-activated platelets in suspension. Blood 1995; 86: 3468-3478
  • 34 White JG, Krumwiede MD, Cocking-Johnson D, Escolar G. Prelabeled glycoprotein Ib/IX are not cleared from exposed surfaces of thrombin- activated platelets. Am J Pathol 1996; 149: 629-638
  • 35 Rao GHR, Peller JD, White JG. Influence of ionized calcium on thrombin- induced down regulation of GP Ib-IX receptors on human platelets. Thromb Res 1997; 85: 23-31
  • 36 Michelson AD, Ellis PA, Barnard MR, Matic GB, Viles AF, Kestin AS. Down regulation of the platelet surface glycoprotein Ib-IX complex in whole blood stimulated by thrombin, adenosine diphosphate, or in vivo wound. Blood 1991; 77: 770-779
  • 37 Hartwig JH, DeSisto M. The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J Cell Biol 1991; 112: 407-425
  • 38 Kovacsovics TJ, Hartwig JH. Thrombin-induced GP Ib-IX centralization on the platelet surface requires actin assembly and myosin II activation. Blood 1996; 87: 618-629
  • 39 Woods VL, Wolff LE, Keller DM. Resting platelets contain a substantial centrally located pool of glycoprotein Ilb-IIIa complex which may be accessible to some but not other extracellular proteins. J Biol Chem 1986; 261: 15242-15251
  • 40 Wencel-Drake JD, Okita JR, Annis DS, Kunicki TJ. Activation of calpain I and hydrolysis of calpain substrates (actin-binding protein glycoprotein lb, and talin) are not a function of thrombin-induced platelet aggregation. Arterioscl Thromb 1991; 11: 882-891
  • 41 Connolly AJ, Ishihara H, Kahn ML, Farese Jr RV, Coughlin SR. Role of thrombin receptor in development and evidence for a second receptor. Nature 1996; 381: 516-519
  • 42 Michelson AD, Barnard MR. Plasmin-induced redistribution of platelet glycoprotein Ib. Blood 1990; 76: 2005-2010
  • 43 Cramer EM, Lu H, Caen JP, Soria C, Bemdt MC, Tenza D. Differential redistribution of platelet glycoproteins Ib and IIb-IIIa after plasmin stimulation. Blood 1991; 77: 694-699
  • 44 Parry MAA, Myles T, Tschopp J, Stone SR. Cleavage of the thrombin receptor: identification of potential activators and inactivators. Biochem J 1996; 320: 335-341
  • 45 Michelson AD, Benoit SE, Kroll MH, Li JM, Rohrer MJ, Kestin AS, Barnard MR. The activation-induced decrease in the platelet surface expression of the glycoprotein Ib-IX complex is reversible. Blood 1994; 83: 3562-3573
  • 46 Lu H, Soria C, Soria J, de RomeufC, Perrot J-Y, Tenza D, Garcia I, Caen J-P, Martin CramerE. Reversible translocation of glycoprotein lb in plas- min-treated platelets: consequences for platelet function. Eur J Clin Invest 1993; 23: 785-793
  • 47 Goodall AH, De OliveiraDomingosM, Chronos N, Janes SL, Wilson D. Flow cytometry detection of the redistribution of the glycoprotein Ib-IX complex on thrombin-stimulated platelets is dependent on the type of antibody conjugate used. Blood 1993; 81: 1407-1408
  • 48 Hourdille P, Gralnick HR, Heilmann E, Derlon A, Ferrer A-M, Vezon G, Nurden AT. von Willebrand factor bound to glycoprotein lb is cleared from the platelet surface after platelet activation by thrombin. Blood 1992; 79: 2011-2021
  • 49 White JG, Krumwiede MD, Cocking-Johnson DJ, Escolar G. Uptake of vWF-anti-vWF compexes by platelets in suspension. Artrioscl Thromb Vase Biol 1996; 16: 868-877
  • 50 Yamamoto N, Greco NJ, Barnard MR, Tanoue K, Yanazaki H, Jamieson GA, Michelson AD. Glycoprotein Ib (GPIb)-dependent and GPIb-independent pathways of thrombin-induced platelet activation. Blood 1991; 77: 1740-1748
  • 51 Du X, Fox JE, Pei S. Identification of a binding sequence for the 14-3 protein within the cytoplasmic domain of the adhesion receptor, platelet glycoprotein Iba. J Biol Chem 1996; 271: 7362-7367
  • 52 Savage B, Saldivar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand Factor. Cell 1996; 84: 289-297
  • 53 George JN, Nurden AT, Phillips DR. Molecular defects in interactions of platelets with the vessel wall. N Engl J Med 1984; 311: 1084-1098
  • 54 Parker RI, Gralnick HR. Fibrin monomer induces binding of endogenous platelet von Willebrand factor to the glycocalicin portion of platelet glycoprotein Ib. Blood 1987; 70: 1589-1596
  • 55 Cohen I, Burk DL, White JG. The effects of peptides and monoclonal antibodies that bind to platelet glycoprotein IIb-IIIa complex on the development of clot tension. Blood 1989; 73: 1880-1887
  • 56 Albrecht RM, Goodman SL, Simmons SR. Distribution and movement of membrane-associated platelet glycoproteins: use of colloidal gold with correlative video-enhanced light microscopy, low-voltage high-resolution scanning electron microscopy, and high-voltage transmission electron microscopy. Am J Anat 1989; 185: 149-164
  • 57 Nurden P, Nurden AT. Giant platelets, megakaryocytes and the expression of glycoprotein Ib-IX complexes. C.R. Acad Sci Paris 1996; 319: 717-726
  • 58 Kunicki TJ, Ruggeri ZM. Molecular properties of human platelet integrin αIIbβ3 . In: Integrins: Molecular and Biological Responses to the Extracellular Matrix. Mecham RP, Cheresh D. (eds) San Diego: Academic Press; 1994: 195-235
  • 59 Calvete JJ. On the structure and function of platelet integrin αIIbβ3, the fibrinogen receptor. Proc Soc Exp Biol Med 1995; 208: 346-360
  • 60 Bray PF, Barsh G, Rosa J-P, Juo XY, Magenis E, Shuman MA. Physical linkage of the genes for platelet membrane glycoproteins IIb and IIIa. Proc Natl Acad Sci USA 1988; 85: 8683-8687
  • 61 D’Souza SE, Ginsberg MH, Burke TA, Lam SC, Plow EF. Localization of an Arg-Gly-Asp recognition site within an integrin adhesion receptor. Science 1988; 242: 91-93
  • 62 D’Souza SE, Ginsberg MH, Matsueda GR, Plow EF. A discrete sequence in a platelet integrin is involved in ligand recognition. Nature 1991; 350: 66-68
  • 63 Steiner B, Trzeciak A, Pfenninger G, Kouns WC. Peptides derived from a sequence within β3integrin bind to platelet αIIbβ3(GP IIb-IIIa) and inhibit ligand binding. J Biol Chem 1993; 268: 6870-6873
  • 64 Alemany M, Concord E, Garin J, Viçon M, Giles A, Marguerie G, Gulino D. Sequence 274-368 in the β3-subunit in the integrin αIIbβ3provides a ligand recognition and binding domain for the γ-chain of fibrinogen that is independent of platelet activation. Blood 1996; 87: 592-601
  • 65 Shattil SJ. Function and regulation of the β3integrins in haemostasis and vascular biology. Thromb Haemost 1995; 74: 149-155
  • 66 van WilligenG, Hers I, Gorter G, Akkerman J-W. Exposure of ligand- binding sites on platelet integrin αIIbβ3by phosphorylation of the β3subunit. Biochem J 1996; 314: 769-779
  • 67 Guinebault C, Payrastre B, Sultan C, Mauco G, Breton B, Levy-Toledano S, Plantavid M, Chap H. Tyrosine kinases and phosphoinositide metabolism in thrombin stimulated human platelets. Biochem J 1993; 292: 851-856
  • 68 Law DA, Nannizzi-Alaimo L, Phillips DR. Outside-in integrin signal transduction. αIIbβ3-(GP IIb-IIIa) tyrosine phosphorylation induced by platelet aggregation. J Biol Chem 1996; 271: 10811-10815
  • 69 Isenberg WM, McEver RP, Phillips DR, Shuman MA, Bainton DF. The platelet fibrinogen receptor: an immunogold-surface replica study of agonist-induced ligand binding and receptor clustering. J Cell Biol 1987; 104: 1655-1663
  • 70 Cramer ER, Savidge GF, Vainchenker W, Bemdt MC, Pidard D, Caen JP, Masse J-M, Breton-Gorius J. Alpha-granule pool of glycoprotein IIb-IIIa in normal and pathologic platelets and megakaryocytes. Blood 1990; 75: 1220-1227
  • 71 Heilmann E, Hourdille P, Pruvost A, Paponneau A, Nurden AT. Thrombin-induced platelet aggregates have a dynamic structure. Time-dependent redistribution of glycoprotein IIb-IIIa complexes and secreted adhesive proteins. Arterioscler Thromb 1991; 11: 704-718
  • 72 Suzuki H, Kaneko T, Sakamoto T, Nakawasa M, Miyamoto T, Yamada M, Tanoue K. Redistribution of a-granule membrane glycoprotein IIb/IIIa (integrin αIIbβ3) to the surface membrane of human platelets during the release reaction. J Electron Microsc 1994; 43: 282-289
  • 73 Abrams SC, Shattil SJ. Immunological detection of activated platelets in clinical ***. Thromb Haemost 1991; 65: 467-473
  • 74 Shattil SJ, Cunningham M, Brass LF. Changes in the platelet membrane glycoprotein IIb-IIIa complex during platelet activation. J Biol Chem 1985; 260: 11107-11114
  • 75 Nurden P, Humbert M, Piotrowicz RS, Bihour C, Poujol C, Nurden AT, Kunicki TJ. Distribution of ligand-occupied αIIbβ3in resting and activated human platelets determined by expression of a novel class of ligand- induced binding site recognized by monoclonal antibody AP6. Blood 1996; 88: 887-899
  • 76 Wencel-Drake JD, Plow EF, Zimmerman TS, Painter RG, Ginsberg MH. Immunofluorescent localization of adherent glycoproteins in resting and thrombin-stimulated platelets. Am J Pathol 1984; 115: 156-164
  • 77 Legrand C, Dubemard V, Nurden AT. Studies on the mechanism of expression of secreted fibrinogen on the surface of activated platelets. Blood 1989; 73: 1226-1234
  • 78 Legrand C, Dubemard V, Rabhi-Sabile S, Morandi DaSilva V. Functional and clinical significance of thrombospondin. Platelets. In Press.
  • 79 Hourdille P, Hasitz M, Belloc F, Nurden AT. Immunocytochemical study of the binding of fibrinogen and thrombospondin to ADP- and thrombin- stimulated human platelets. Blood 1985; 65: 912-920
  • 80 Loftus JC, Albrecht RM. Redistribution of the fibrinogen receptor of human platelets following surface activation. J Cell Biol 1984; 99: 822-829
  • 81 Escolar G, Leistikow E, White JG. The fate of the open canalicular system in surface and suspension-activated platelets. Blood 1989; 74: 1983-1988
  • 82 Peerschke EIB. Regulation of platelet aggregation by post-fibrinogen binding events. Insights provided by dithiothreitol-treated platelets. Thromb Haemost 1995; 73: 862-867
  • 83 Peerschke EIB. Bound fibrinogen distribution on stimulated platelets. Examination by confocal scanning laser microscopy. Am J Pathol 1995; 147: 678-687
  • 84 Wencel-Drake J, Boudignon-Proudhon C, Dieter MG, Criss AB, Parise LV. Internalization of bound fibrinogen modulates platelet aggregation. Blood 1996; 87: 602-612
  • 85 Fox JEB, Shattil SJ, Kinlough-Rathbone RL, Richardson M, Packham MA, Sanan DA. The platelet cytoskeleton stabilizes the interaction between αIIbβ3and its ligand and induces selective movements of ligand- occupied integrin. J Biol Chem 1996; 271: 7004-7011
  • 86 Handagama P, Scarborough R, Shuman MA, Bainton DF. Endocytosis of fibrinogen into megakaryocyte and platelet α-granules is mediated by αIIbβ3(glycoprotein IIb-IIIa). Blood 1993; 82: 135-138
  • 87 Behnke O. Degrading and non-degrading pathways in fluid-phase (non- adsorptive) endocytosis in human blood platelets. J Submicrosc Cytol Pathol 1992; 24: 169-178
  • 88 Wencel-Drake JD, Frelinger III AL, Dieter MG, Lam SC-T. Arg-Gly-Asp- dependent occupancy of GP IIb/IIIa by applagin: Evidence for internalization and cycling of a platelet integrin. Blood 1993; 81: 62-69
  • 89 Fox JEB, Lipfer L, Clark EA, Reynolds CC, Austin CD, Brugge JS. On the role of the platelet membrane skeleton in mediating signal transduction. Association of GP IIb-IIIa, pp60c src, pp62c yes, and the p21rasGTPase- activating protein with the membrane skeleton. J Biol Chem 1993; 268: 25973-25984
  • 90 Simon KO, Burridge K. Interactions between integrins and the cytoskeleton: Structure and regulation. In: Integrins: Molecular and Biological Responses to the Extracellular Matrix. Mecham RP, Cheresh D. (eds.) San Diego: Academic Press; 1994: 49-78
  • 91 Fisher TH, Gatling MN, McCormick F, Duffy CM, White IIGC. Incorporation of Rap Ib into the platelet cytoskeleton is dependent on thrombin activation and extracellular calcium. J Biol Chem 1994; 269: 17257-17261
  • 92 Torti L, Ramaschi G, Sinigaglia F, Lapetina EG, Balduini C. Glycoprotein IIb-IIIa and the translocation of Rap2B to the platelet cytoskeleton. Proc Natl Acad Sci USA 1994; 91: 4239-4243
  • 93 Guinebault C, Payastre B, Racaud-Sultan C, Mazarguil H, Breton M, Mauco G, Plantavid M, Chap H. Integrin-dependent translocation of phos- phoinositide 3-kinase to the cytoskeleton of thrombin-activated platelets involves specific interactions of p85α with actin filaments and focal adhesion kinase. J Cell Biol 1995; 129: 831-842
  • 94 Santoso S, Kiefel V, Mueller-Eckardt C. Redistribution of platelet glycoproteins induced by alio- and auto-antigens. Thromb Haemost 1987; 58: 866-871
  • 95 Nomura S, Yanabu M, Miyake T, Miyazaki Y, Kawakatsu T, Kido H, Yamaguchi K, Fukuroi T, Kagawa H, Susuki M, Kokawa T, Fukuhara S. Effect of cepharanthin and cytochalasin D on platelet internalization of anti-glycoprotein Eb/IDa antibodies. Autoimmunity 1994; 18: 23-29
  • 96 Macchi L, Clofent-Sanchez G, Marit G, Bihour C, Durrieu-Jais C, Besse P, Nurden P, Nurden AT. PAICA: A method for characterizing platelet- associated antibodies. Its application to the study of idiopathic thrombocytopenic purpura and to the detection of platelet-bound c7E3. Thromb Haemost 1996; 76: 1020-1029
  • 97 Gebrane-Younes J, Martin CramerE, Orcel L, Caen JP. Gray platelet syndrome. Association between abnormal sorting in megakaryocytes α-granules and normal sorting in Weibel-Palade bodies of endothelial cells. J Clin Invest 1993; 92: 3023-3028
  • 98 Israels SJ, Gerrard JM, Jacques YV, McNichol A, Cham B, Nishibori M, Bainton DF. Platelet dense granule membranes contain both granulophy- sin and P-selectin (GMP-140). Blood 1992; 80: 143-152
  • 99 Crovello CS, Furie BC, Furie B. Histidine phosphorylation of P-selectin upon stimulation of human platelets: A novel pathway for activation- dependent signal transduction. Cell 1995; 82: 279-286
  • 100 Norman KE, Moore KL, McEver RP, Ley K. Leukocyte rolling in vivo is mediated by P-selectin glycoprotein ligand-1. Blood 1995; 86: 4417-4421
  • 101 Michelson AD, Barnard MR, Hechtman HB, MacGregor H, Connolly RJ, Loscalzo J, Valeri CR. In vivo tracking of platelets: Circulating degranulated platelets rapidly lose surface P-selectin but continue to circulate and function. Proc Natl Acad Sci USA 1996; 93: 11877-11882