Thromb Haemost 1985; 54(02): 390-393
DOI: 10.1055/s-0038-1657746
Original Article
Schattauer GmbH Stuttgart

Fibrinogen Bergamo I (Aα16Arg → Cys): Susceptibility Towards Thrombin Following Aminoethylation, Methylation or Carboxamidomethylation of Cysteine Residues

P Reber
1   The Central Hematology Laboratory, Inselspital, Bern, Switzerland
,
M Furlan
1   The Central Hematology Laboratory, Inselspital, Bern, Switzerland
,
E A Beck
1   The Central Hematology Laboratory, Inselspital, Bern, Switzerland
,
G Finazzi
2   The Istituto di Ricerche Farmacologiche “Mario Negri”, Bergamo, Italy
,
M Buelli
3   The Divisione di Ematologia, Ospedali Riuniti di Bergamo, Italy
,
T Barbui
3   The Divisione di Ematologia, Ospedali Riuniti di Bergamo, Italy
› Author Affiliations
Further Information

Publication History

Received 10 December 1984

Accepted 19 April 1985

Publication Date:
18 July 2018 (online)

Summary

An abnormal fibrinogen, denoted as “fibrinogen Bergamo I”, has been characterized. Its defect consists in an exchange of arginine by cysteine in position 16 of the Aα-chain, thus corresponding to that found in a number of other fibrinogen variants. The abnormal fibrinopeptide A cannot be split off by thrombin from intact fibrinogen Bergamo I. We describe three different chemical modifications of the cysteine Aαl6, i.e. aminoethylation, methylation and carboxamidomethylation, and their effects on the susceptibility of fibrinogen Bergamo I towards thrombin attack. S-aminoethylation of the Aαl6Cys renders the peptide bond Aαl6–17 cleavable by thrombin. Following methylation or carboxamidomethylation, the Aαl9-arginyl bond becomes accessible for thrombin. The chemically modified extended fibrinopeptide A can be readily separated from the normal fibrinopeptide A by HPLC. The latter two modifications are suitable alternative procedures for detecting the molecular defect Aαl6Arg → Cys of fibrinogen.

 
  • References

  • 1 Imperato C, Dettori AG. Ipofibrinogenemia congenita con fibrinoastenia. Helv paediat Acta 1958; 13: 380-399
  • 2 Rupp C, Beck EA. Congenital dysfibrinogenemia. In: Variants of human fibrinogen. Beck EA, Furlan M. (eds). Huber; Bern: 1984: 65-130
  • 3 Furlan M, Rupp C, Beck EA, Svendsen L. Effect of calcium and synthetic peptides on fibrin polymerization. Thromb Haemostas 1982; 47: 118-121
  • 4 Kehl M, Lottspeich F, Henschen A. Analysis of human fibrinopeptides by high-performance liquid chromatography. Hoppe-Seyler’s Z Physiol Chem 1981; 363: 1661-1664
  • 5 Gollwitzer R, Becker R, Timpl R. Isolation and chemical characterization of reduced and aminoethylated polypeptide chains of bovine fibrinogen. Febs Letters 1974; 47: 177-180
  • 6 Henschen A, Kehl M, Deutsch E. Novel structure elucidation for genetically abnormal fibrinogens with incomplete fibrinopeptide release as applied to fibrinogen Schwarzach. Hoppe-Seyler’s Z Physiol Chem 1983; 364: 1747-1751
  • 7 Boyer MH, Shainoff JR, Ratnoff OD. Acceleration of fibrin polymerization by calcium ions. Blood 1972; 39: 382-387
  • 8 Henschen A, Kehl M, Southan C, Lottspeich F. Genetically abnormal fibrinogens – strategies for structure elucidation, including fibrinopeptide analysis. In: Variants of human fibrinogen. Beck EA, Furlan M. (eds). Huber; Bern: 1984: 273-320
  • 9 Blombäck B, Blombäck M, Hessel B, Iwanaga S. Structure of N-terminal fragments of fibrinogen and specificity of thrombin. Nature 1967; 215: 1445-1448
  • 10 Kang EP, Triantaphyllopoulos DC. Fibrinogen digestion by thrombin – comparision with plasmin-digested fibrinogen. Biochim Biophys Acta 1977; 490: 430-442
  • 11 Clauss A. Gerinnungsphysiologische Schnellmethode zur Bestimmung des Fibrinogens. Acta Haematol 1957; 17: 237-246
  • 12 Schulz FH. Eine einfache Bewertungsmethode von Leberparenchym-schäden (volumetrische Fibrinbestimmung). Acta Hepato splen 1955; 03: 306-310
  • 13 Laurell CB. Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal Biochem 1966; 15: 45-52