Semin Thromb Hemost 2018; 44(06): 517-530
DOI: 10.1055/s-0038-1657777
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Inhibitor Formation in Congenital Hemophilia A: an Immunological Perspective

Sandrine Delignat
1   Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
2   INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
3   Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
,
Julie Rayes
1   Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
2   INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
3   Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
,
Jules Russick
1   Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
2   INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
3   Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
,
Srinivas V. Kaveri
1   Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
2   INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
3   Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
,
Sebastien Lacroix-Desmazes
1   Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
2   INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
3   Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
,
The ABIRISK consortium › Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
04. Juni 2018 (online)

Abstract

The immunogenicity of therapeutic factor VIII (FVIII) in patients with hemophilia A has been puzzling scientific and clinical communities for more than 3 decades. Indeed, the development of inhibitory antibodies to FVIII remains a major clinical challenge and is associated with enormous societal costs. Thus, the reasons for which a presumably innocuous, short-lived, intravenously administered glycoprotein triggers such a deleterious, long-lasting neutralizing immune response is an enigma. This review does not pretend to bring an answer to this challenging question. It will however summarize the latest findings regarding the molecular interactions at play in the recognition of FVIII by the immune cells, the validity of the proposed risk factors for FVIII alloimmunization, and the different solutions that allow induction of FVIII-specific tolerance in preclinical models of hemophilia A.

 
  • References

  • 1 Dasgupta S, Bayry J, André S, Dimitrov JD, Kaveri SV, Lacroix-Desmazes S. Auditing protein therapeutics management by professional APCs: toward prevention of immune responses against therapeutic proteins. J Immunol 2008; 181 (03) 1609-1615
  • 2 Pineda C, Castañeda Hernández G, Jacobs IA, Alvarez DF, Carini C. Assessing the Immunogenicity of Biopharmaceuticals. BioDrugs 2016; 30 (03) 195-206
  • 3 Lacroix-Desmazes S, Navarrete A-M, André S, Bayry J, Kaveri SV, Dasgupta S. Dynamics of factor VIII interactions determine its immunologic fate in hemophilia A. Blood 2008; 112 (02) 240-249
  • 4 Bray GL, Kroner BL, Arkin S. , et al. Loss of high-responder inhibitors in patients with severe hemophilia A and human immunodeficiency virus type 1 infection: a report from the Multi-Center Hemophilia Cohort Study. Am J Hematol 1993; 42 (04) 375-379
  • 5 Qian J, Burkly LC, Smith EP. , et al. Role of CD154 in the secondary immune response: the reduction of pre-existing splenic germinal centers and anti-factor VIII inhibitor titer. Eur J Immunol 2000; 30 (09) 2548-2554
  • 6 Reipert BM, Sasgary M, Ahmad RU, Auer W, Turecek PL, Schwarz HP. Blockade of CD40/CD40 ligand interactions prevents induction of factor VIII inhibitors in hemophilic mice but does not induce lasting immune tolerance. Thromb Haemost 2001; 86 (06) 1345-1352
  • 7 Rossi G, Sarkar J, Scandella D. Long-term induction of immune tolerance after blockade of CD40-CD40L interaction in a mouse model of hemophilia A. Blood 2001; 97 (09) 2750-2757
  • 8 Qian J, Collins M, Sharpe AH, Hoyer LW. Prevention and treatment of factor VIII inhibitors in murine hemophilia A. Blood 2000; 95 (04) 1324-1329
  • 9 Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibody-secreting plasma cells. Nat Rev Immunol 2015; 15 (03) 160-171
  • 10 Kurosaki T, Kometani K, Ise W. Memory B cells. Nat Rev Immunol 2015; 15 (03) 149-159
  • 11 Kometani K, Nakagawa R, Shinnakasu R. , et al. Repression of the transcription factor Bach2 contributes to predisposition of IgG1 memory B cells toward plasma cell differentiation. Immunity 2013; 39 (01) 136-147
  • 12 Moser K, Tokoyoda K, Radbruch A, MacLennan I, Manz RA. Stromal niches, plasma cell differentiation and survival. Curr Opin Immunol 2006; 18 (03) 265-270
  • 13 Hofbauer CJ, Whelan SFJ, Hirschler M. , et al. Affinity of FVIII-specific antibodies reveals major differences between neutralizing and nonneutralizing antibodies in humans. Blood 2015; 125 (07) 1180-1188
  • 14 Reipert BM. B-cell memory against factor VIII. Cell Immunol 2016; 301: 49-58
  • 15 Whelan SFJ, Hofbauer CJ, Horling FM. , et al. Distinct characteristics of antibody responses against factor VIII in healthy individuals and in different cohorts of hemophilia A patients. Blood 2013; 121 (06) 1039-1048
  • 16 van Helden PMW, Kaijen PHP, Fijnvandraat K, van den Berg HM, Voorberg J. Factor VIII-specific memory B cells in patients with hemophilia A. J Thromb Haemost 2007; 5 (11) 2306-2308
  • 17 Meslier Y, André S, Dimitrov JD. , et al. Bortezomib delays the onset of factor VIII inhibitors in experimental hemophilia A, but fails to eliminate established anti-factor VIII IgG-producing cells. J Thromb Haemost 2011; 9 (04) 719-728
  • 18 Hausl C, Maier E, Schwarz HP. , et al. Long-term persistence of anti-factor VIII antibody-secreting cells in hemophilic mice after treatment with human factor VIII. Thromb Haemost 2002; 87 (05) 840-845
  • 19 Zerra PE, Cox C, Baldwin WH. , et al. Marginal zone B cells are critical to factor VIII inhibitor formation in mice with hemophilia A. Blood 2017; 130 (23) 2559-2568
  • 20 Arnon TI, Horton RM, Grigorova IL, Cyster JG. Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature 2013; 493 (7434): 684-688
  • 21 Archambault AS, Carrero JA, Barnett LG. , et al. Cutting edge: conditional MHC class II expression reveals a limited role for B cell antigen presentation in primary and secondary CD4 T cell responses. J Immunol 2013; 191 (02) 545-550
  • 22 den Haan JMM, Kraal G. Innate immune functions of macrophage subpopulations in the spleen. J Innate Immun 2012; 4 (5-6): 437-445
  • 23 Navarrete A, Dasgupta S, Delignat S. , et al. Splenic marginal zone antigen-presenting cells are critical for the primary allo-immune response to therapeutic factor VIII in hemophilia A. J Thromb Haemost 2009; 7 (11) 1816-1823
  • 24 Borges da Silva H, Fonseca R, Pereira RM, Cassado AdosA, Álvarez JM, D'Império Lima MR. Splenic macrophage subsets and their function during blood-borne infections. Front Immunol 2015; 6: 480
  • 25 Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 2005; 307 (5715): 1630-1634
  • 26 Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol 2005; 23: 975-1028
  • 27 Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol 2005; 5 (08) 606-616
  • 28 Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392 (6673): 245-252
  • 29 Dasgupta S, Navarrete A-M, Bayry J. , et al. A role for exposed mannosylations in presentation of human therapeutic self-proteins to CD4+ T lymphocytes. Proc Natl Acad Sci U S A 2007; 104 (21) 8965-8970
  • 30 van Haren SD, Herczenik E, ten Brinke A, Mertens K, Voorberg J, Meijer AB. HLA-DR-presented peptide repertoires derived from human monocyte-derived dendritic cells pulsed with blood coagulation factor VIII. Mol Cell Proteomics 2011; 10 (06) 002246
  • 31 Herczenik E, van Haren SD, Wroblewska A. , et al. Uptake of blood coagulation factor VIII by dendritic cells is mediated via its C1 domain. J Allergy Clin Immunol 2012; 129 (02) 501-509 , 509.e1–509.e5
  • 32 Lai JD, Georgescu MT, Hough C, Lillicrap D. To clear or to fear: An innate perspective on factor VIII immunity. Cell Immunol 2016; 301: 82-89
  • 33 Lenting PJ, Christophe OD, Guéguen P. The disappearing act of factor VIII. Haemophilia 2010; 16 (102) 6-15
  • 34 Lenting PJ, Neels JG, van den Berg BM. , et al. The light chain of factor VIII comprises a binding site for low density lipoprotein receptor-related protein. J Biol Chem 1999; 274 (34) 23734-23739
  • 35 Saenko EL, Yakhyaev AV, Mikhailenko I, Strickland DK, Sarafanov AG. Role of the low density lipoprotein-related protein receptor in mediation of factor VIII catabolism. J Biol Chem 1999; 274 (53) 37685-37692
  • 36 Bovenschen N, Herz J, Grimbergen JM. , et al. Elevated plasma factor VIII in a mouse model of low-density lipoprotein receptor-related protein deficiency. Blood 2003; 101 (10) 3933-3939
  • 37 Vormittag R, Bencur P, Ay C. , et al. Low-density lipoprotein receptor-related protein 1 polymorphism 663 C > T affects clotting factor VIII activity and increases the risk of venous thromboembolism. J Thromb Haemost 2007; 5 (03) 497-502
  • 38 Bovenschen N, Boertjes RC, van Stempvoort G. , et al. Low density lipoprotein receptor-related protein and factor IXa share structural requirements for binding to the A3 domain of coagulation factor VIII. J Biol Chem 2003; 278 (11) 9370-9377
  • 39 Sarafanov AG, Makogonenko EM, Pechik IV. , et al. Identification of coagulation factor VIII A2 domain residues forming the binding epitope for low-density lipoprotein receptor-related protein. Biochemistry 2006; 45 (06) 1829-1840
  • 40 Bovenschen N, van Stempvoort G, Voorberg J, Mertens K, Meijer AB. Proteolytic cleavage of factor VIII heavy chain is required to expose the binding-site for low-density lipoprotein receptor-related protein within the A2 domain. J Thromb Haemost 2006; 4 (07) 1487-1493
  • 41 Sarafanov AG, Ananyeva NM, Shima M, Saenko EL. Cell surface heparan sulfate proteoglycans participate in factor VIII catabolism mediated by low density lipoprotein receptor-related protein. J Biol Chem 2001; 276 (15) 11970-11979
  • 42 Rastegarlari G, Pegon JN, Casari C. , et al. Macrophage LRP1 contributes to the clearance of von Willebrand factor. Blood 2012; 119 (09) 2126-2134
  • 43 Pawaria S, Binder RJ. CD91-dependent programming of T-helper cell responses following heat shock protein immunization. Nat Commun 2011; 2: 521
  • 44 Pawaria S, Messmer MN, Zhou YJ, Binder RJ. A role for the heat shock protein-CD91 axis in the initiation of immune responses to tumors. Immunol Res 2011; 50 (2-3): 255-260
  • 45 Redzovic A, Gulic T, Laskarin G, Eminovic S, Haller H, Rukavina D. Heat-shock proteins 70 induce pro-inflammatory maturation program in decidual CD1a(+) dendritic cells. Am J Reprod Immunol 2015; 74 (01) 38-53
  • 46 van den Biggelaar M, Madsen JJ, Faber JH. , et al. Factor VIII interacts with the endocytic receptor low-density lipoprotein receptor-related protein 1 via an extended surface comprising “hot-spot” lysine residues. J Biol Chem 2015; 290 (27) 16463-16476
  • 47 Bovenschen N, Mertens K, Hu L, Havekes LM, van Vlijmen BJM. LDL receptor cooperates with LDL receptor-related protein in regulating plasma levels of coagulation factor VIII in vivo. Blood 2005; 106 (03) 906-912
  • 48 Dasgupta S, Navarrete AM, André S. , et al. Factor VIII bypasses CD91/LRP for endocytosis by dendritic cells leading to T-cell activation. Haematologica 2008; 93 (01) 83-89
  • 49 Delignat S, Repessé Y, Navarrete A-M. , et al. Immunoprotective effect of von Willebrand factor towards therapeutic factor VIII in experimental haemophilia A. Haemophilia 2012; 18 (02) 248-254
  • 50 Bovenschen N, Rijken DC, Havekes LM, van Vlijmen BJM, Mertens K. The B domain of coagulation factor VIII interacts with the asialoglycoprotein receptor. J Thromb Haemost 2005; 3 (06) 1257-1265
  • 51 Fijnvandraat K, Berntorp E, ten Cate JW. , et al. Recombinant, B-domain deleted factor VIII (r-VIII SQ): pharmacokinetics and initial safety aspects in hemophilia A patients. Thromb Haemost 1997; 77 (02) 298-302
  • 52 Pegon JN, Kurdi M, Casari C. , et al. Factor VIII and von Willebrand factor are ligands for the carbohydrate-receptor Siglec-5. Haematologica 2012; 97 (12) 1855-1863
  • 53 Lock K, Zhang J, Lu J, Lee SH, Crocker PR. Expression of CD33-related siglecs on human mononuclear phagocytes, monocyte-derived dendritic cells and plasmacytoid dendritic cells. Immunobiology 2004; 209 (1-2): 199-207
  • 54 Navarrete A-M, Dasgupta S, Teyssandier M. , et al. Endocytic receptor for pro-coagulant factor VIII: relevance to inhibitor formation. Thromb Haemost 2010; 104 (06) 1093-1098
  • 55 Repessé Y, Dasgupta S, Navarrete A-M, Delignat S, Kaveri SV, Lacroix-Desmazes S. Mannose-sensitive receptors mediate the uptake of factor VIII therapeutics by human dendritic cells. J Allergy Clin Immunol 2012; 129 (04) 1172-1173 , author reply 1174–1175
  • 56 Martinez-Pomares L. The mannose receptor. J Leukoc Biol 2012; 92 (06) 1177-1186
  • 57 Gröger M, Holnthoner W, Maurer D. , et al. Dermal microvascular endothelial cells express the 180-kDa macrophage mannose receptor in situ and in vitro. J Immunol 2000; 165 (10) 5428-5434
  • 58 Pontow SE, Kery V, Stahl PD. Mannose receptor. Int Rev Cytol 1992; 137B: 221-244
  • 59 Stahl PD, Ezekowitz RA. The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 1998; 10 (01) 50-55
  • 60 Taylor PR, Martinez-Pomares L, Stacey M, Lin H-H, Brown GD, Gordon S. Macrophage receptors and immune recognition. Annu Rev Immunol 2005; 23: 901-944
  • 61 Lee SJ, Evers S, Roeder D. , et al. Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 2002; 295 (5561): 1898-1901
  • 62 Medzihradszky KF, Besman MJ, Burlingame AL. Structural characterization of site-specific N-glycosylation of recombinant human factor VIII by reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry. Anal Chem 1997; 69 (19) 3986-3994
  • 63 Vehar GA, Keyt B, Eaton D. , et al. Structure of human factor VIII. Nature 1984; 312 (5992): 337-342
  • 64 Hironaka T, Furukawa K, Esmon PC. , et al. Comparative study of the sugar chains of factor VIII purified from human plasma and from the culture media of recombinant baby hamster kidney cells. J Biol Chem 1992; 267 (12) 8012-8020
  • 65 Kannicht C, Ramström M, Kohla G. , et al. Characterisation of the post-translational modifications of a novel, human cell line-derived recombinant human factor VIII. Thromb Res 2013; 131 (01) 78-88
  • 66 Rydz N, Swystun LL, Notley C. , et al. The C-type lectin receptor CLEC4M binds, internalizes, and clears von Willebrand factor and contributes to the variation in plasma von Willebrand factor levels. Blood 2013; 121 (26) 5228-5237
  • 67 Zhang F, Ren S, Zuo Y. DC-SIGN, DC-SIGNR and LSECtin: C-type lectins for infection. Int Rev Immunol 2014; 33 (01) 54-66
  • 68 Gangadharan B, Ing M, Delignat S. , et al. The C1 and C2 domains of blood coagulation factor VIII mediate its endocytosis by dendritic cells. Haematologica 2017; 102 (02) 271-281
  • 69 Wroblewska A, van Haren SD, Herczenik E. , et al. Modification of an exposed loop in the C1 domain reduces immune responses to factor VIII in hemophilia A mice. Blood 2012; 119 (22) 5294-5300
  • 70 Dasgupta S, Repessé Y, Bayry J. , et al. VWF protects FVIII from endocytosis by dendritic cells and subsequent presentation to immune effectors. Blood 2007; 109 (02) 610-612
  • 71 Sorvillo N, Hartholt RB, Bloem E. , et al. von Willebrand factor binds to the surface of dendritic cells and modulates peptide presentation of factor VIII. Haematologica 2016; 101 (03) 309-318
  • 72 Lai J, Hough C, Tarrant J, Lillicrap D. Biological considerations of plasma-derived and recombinant factor VIII immunogenicity. Blood 2017; 129 (24) 3147-3154
  • 73 Peyvandi F, Mannucci PM, Garagiola I. , et al. A Randomized Trial of Factor VIII and Neutralizing Antibodies in Hemophilia A. N Engl J Med 2016; 374 (21) 2054-2064
  • 74 Rayes J, Ing M, Delignat S. et al. Complement C3 is a novel modulator of the anti-factor VIII immune response. Haematologica 2018; 103: 351-360
  • 75 Matzinger P. The danger model: a renewed sense of self. Science 2002; 296 (5566): 301-305
  • 76 Pfistershammer K, Stöckl J, Siekmann J, Turecek PL, Schwarz HP, Reipert BM. Recombinant factor VIII and factor VIII-von Willebrand factor complex do not present danger signals for human dendritic cells. Thromb Haemost 2006; 96 (03) 309-316
  • 77 Teyssandier M, André S, Gupta N. , et al; ABIRISK consortium. Therapeutic factor VIII does not trigger TLR1.2 and TLR2.6 signalling in vitro. Haemophilia 2013; 19 (03) 399-402
  • 78 Miller L, Weissmüller S, Ringler E. , et al; ABIRISK consortium. Danger signal-dependent activation of human dendritic cells by plasma-derived factor VIII products. Thromb Haemost 2015; 114 (02) 268-276
  • 79 Dargaud Y, Béguin S, Lienhart A. , et al. Evaluation of thrombin generating capacity in plasma from patients with haemophilia A and B. Thromb Haemost 2005; 93 (03) 475-480
  • 80 Skupsky J, Zhang A-H, Su Y, Scott DW. A role for thrombin in the initiation of the immune response to therapeutic factor VIII. Blood 2009; 114 (21) 4741-4748
  • 81 Meeks SL, Cox CL, Healey JF. , et al. A major determinant of the immunogenicity of factor VIII in a murine model is independent of its procoagulant function. Blood 2012; 120 (12) 2512-2520
  • 82 Gangadharan B, Delignat S, Ollivier V. , et al. Role of coagulation-associated processes on factor VIII immunogenicity in a mouse model of severe hemophilia A. J Thromb Haemost 2014; 12 (12) 2065-2069
  • 83 Kurnik K, Bidlingmaier C, Engl W, Chehadeh H, Reipert B, Auerswald G. New early prophylaxis regimen that avoids immunological danger signals can reduce FVIII inhibitor development. Haemophilia 2010; 16 (02) 256-262
  • 84 Auerswald G, Kurnik K, Aledort LM. , et al; EPIC clinical study group. The EPIC study: a lesson to learn. Haemophilia 2015; 21 (05) 622-628
  • 85 Peyron I, Dimitrov JD, Delignat S. , et al. Haemarthrosis and arthropathy do not favour the development of factor VIII inhibitors in severe haemophilia A mice. Haemophilia 2015; 21 (01) e94-e98
  • 86 Lövgren KM, Søndergaard H, Skov S, Wiinberg B. Joint bleeds increase the inhibitor response to human factor VIII in a rat model of severe haemophilia A. Haemophilia 2016; 22 (05) 772-779
  • 87 Platokouki H, Fischer K, Gouw SC. , et al. Vaccinations are not associated with inhibitor development in boys with severe haemophilia A. Haemophilia 2017
  • 88 Lai JD, Moorehead PC, Sponagle K. , et al. Concurrent influenza vaccination reduces anti-FVIII antibody responses in murine hemophilia A. Blood 2016; 127 (26) 3439-3449
  • 89 Gouw SC, van den Berg HM, le Cessie S, van der Bom JG. Treatment characteristics and the risk of inhibitor development: a multicenter cohort study among previously untreated patients with severe hemophilia A. J Thromb Haemost 2007; 5 (07) 1383-1390
  • 90 Gouw SC, van den Berg HM, Fischer K. , et al; PedNet and Research of Determinants of INhibitor development (RODIN) Study Group. Intensity of factor VIII treatment and inhibitor development in children with severe hemophilia A: the RODIN study. Blood 2013; 121 (20) 4046-4055
  • 91 Reipert BM, Ahmad RU, Turecek PL, Schwarz HP. Characterization of antibodies induced by human factor VIII in a murine knockout model of hemophilia A. Thromb Haemost 2000; 84 (05) 826-832
  • 92 Pradeu T, Jaeger S, Vivier E. The speed of change: towards a discontinuity theory of immunity?. Nat Rev Immunol 2013; 13 (10) 764-769
  • 93 Goodeve AC, Peake IR. The molecular basis of hemophilia A: genotype-phenotype relationships and inhibitor development. Semin Thromb Hemost 2003; 29 (01) 23-30
  • 94 Amano K, Sarkar R, Pemberton S, Kemball-Cook G, Kazazian Jr HH, Kaufman RJ. The molecular basis for cross-reacting material-positive hemophilia A due to missense mutations within the A2-domain of factor VIII. Blood 1998; 91 (02) 538-548
  • 95 David D, Saenko EL, Santos IM. , et al. Stable recombinant expression and characterization of the two haemophilic factor VIII variants C329S (CRM(-)) and G1948D (CRM(r)). Br J Haematol 2001; 113 (03) 604-615
  • 96 Pipe SW, Kaufman RJ. Factor VIII C2 domain missense mutations exhibit defective trafficking of biologically functional proteins. J Biol Chem 1996; 271 (41) 25671-25676
  • 97 Pashov AD, Calvez T, Gilardin L. , et al. In silico calculated affinity of FVIII-derived peptides for HLA class II alleles predicts inhibitor development in haemophilia A patients with missense mutations in the F8 gene. Haemophilia 2014; 20 (02) 176-184
  • 98 Shepherd AJ, Skelton S, Sansom CE, Gomez K, Moss DS, Hart DP. A large-scale computational study of inhibitor risk in non-severe haemophilia A. Br J Haematol 2015; 168 (03) 413-420
  • 99 Yanover C, Jain N, Pierce G, Howard TE, Sauna ZE. Pharmacogenetics and the immunogenicity of protein therapeutics. Nat Biotechnol 2011; 29 (10) 870-873
  • 100 Gouw SC, van den Berg HM, Oldenburg J. , et al. F8 gene mutation type and inhibitor development in patients with severe hemophilia A: systematic review and meta-analysis. Blood 2012; 119 (12) 2922-2934
  • 101 Pandey GS, Yanover C, Miller-Jenkins LM. , et al; PATH (Personalized Alternative Therapies for Hemophilia) Study Investigators. Endogenous factor VIII synthesis from the intron 22-inverted F8 locus may modulate the immunogenicity of replacement therapy for hemophilia A. Nat Med 2013; 19 (10) 1318-1324
  • 102 Everett LA, Cleuren ACA, Khoriaty RN, Ginsburg D. Murine coagulation factor VIII is synthesized in endothelial cells. Blood 2014; 123 (24) 3697-3705
  • 103 Astermark J, Oldenburg J, Pavlova A, Berntorp E, Lefvert A-K. ; MIBS Study Group. Polymorphisms in the IL10 but not in the IL1beta and IL4 genes are associated with inhibitor development in patients with hemophilia A. Blood 2006; 107 (08) 3167-3172
  • 104 Astermark J, Oldenburg J, Carlson J. , et al. Polymorphisms in the TNFA gene and the risk of inhibitor development in patients with hemophilia A. Blood 2006; 108 (12) 3739-3745
  • 105 Astermark J, Wang X, Oldenburg J, Berntorp E, Lefvert A-K. ; MIBS Study Group. Polymorphisms in the CTLA-4 gene and inhibitor development in patients with severe hemophilia A. J Thromb Haemost 2007; 5 (02) 263-265
  • 106 Pavlova A, Delev D, Lacroix-Desmazes S. , et al. Impact of polymorphisms of the major histocompatibility complex class II, interleukin-10, tumor necrosis factor-alpha and cytotoxic T-lymphocyte antigen-4 genes on inhibitor development in severe hemophilia A. J Thromb Haemost 2009; 7 (12) 2006-2015
  • 107 Pinto P, Ghosh K, Shetty S. Immune regulatory gene polymorphisms as predisposing risk factors for the development of factor VIII inhibitors in Indian severe haemophilia A patients. Haemophilia 2012; 18 (05) 794-797
  • 108 Hu G-L, Okita DK, Conti-Fine BM. T cell recognition of the A2 domain of coagulation factor VIII in hemophilia patients and healthy subjects. J Thromb Haemost 2004; 2 (11) 1908-1917
  • 109 Franchini M, Coppola A, Mengoli C. , et al; ad hoc Study Group. Blood group O protects against inhibitor development in severe hemophilia A patients. Semin Thromb Hemost 2017; 43 (01) 69-74
  • 110 Albánez S, Ogiwara K, Michels A. , et al. Aging and ABO blood type influence von Willebrand factor and factor VIII levels through interrelated mechanisms. J Thromb Haemost 2016; 14 (05) 953-963
  • 111 Astermark J, Donfield SM, Gomperts ED. , et al; Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort. The polygenic nature of inhibitors in hemophilia A: results from the Hemophilia Inhibitor Genetics Study (HIGS) combined cohort. Blood 2013; 121 (08) 1446-1454
  • 112 Repessé Y, Peyron I, Dimitrov JD. , et al; ABIRISK consortium. Development of inhibitory antibodies to therapeutic factor VIII in severe hemophilia A is associated with microsatellite polymorphisms in the HMOX1 promoter. Haematologica 2013; 98 (10) 1650-1655
  • 113 Brusko TM, Wasserfall CH, Agarwal A, Kapturczak MH, Atkinson MA. An integral role for heme oxygenase-1 and carbon monoxide in maintaining peripheral tolerance by CD4+CD25+ regulatory T cells. J Immunol 2005; 174 (09) 5181-5186
  • 114 Choi B-M, Pae H-O, Jeong Y-R, Kim Y-M, Chung H-T. Critical role of heme oxygenase-1 in Foxp3-mediated immune suppression. Biochem Biophys Res Commun 2005; 327 (04) 1066-1071
  • 115 Matino D, Gargaro M, Santagostino E. , et al. IDO1 suppresses inhibitor development in hemophilia A treated with factor VIII. J Clin Invest 2015; 125 (10) 3766-3781
  • 116 van Baren N, Van den Eynde BJ. Tumoral immune resistance mediated by enzymes that degrade tryptophan. Cancer Immunol Res 2015; 3 (09) 978-985
  • 117 Dimitrov JD, Dasgupta S, Navarrete A-M. , et al. Induction of heme oxygenase-1 in factor VIII-deficient mice reduces the immune response to therapeutic factor VIII. Blood 2010; 115 (13) 2682-2685
  • 118 Delignat S, Gilardin L, Plantier J-L. , et al. Role of mannose-ending glycans in the endocytosis and presentation of FVIII to T cell by human and mouse antigen-presenting cells [abstract]. J Thromb Haemost 2013; 11 (S2): 207
  • 119 Zakas PM, Brown HC, Knight K. , et al. Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction. Nat Biotechnol 2017; 35 (01) 35-37
  • 120 Moise L, Song C, Martin WD, Tassone R, De Groot AS, Scott DW. Effect of HLA DR epitope de-immunization of Factor VIII in vitro and in vivo. Clin Immunol 2012; 142 (03) 320-331
  • 121 Scott DW. Inhibitors - cellular aspects and novel approaches for tolerance. Haemophilia 2014; 20 (Suppl. 04) 80-86
  • 122 Macauley MS, Pfrengle F, Rademacher C. , et al. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. J Clin Invest 2013; 123 (07) 3074-3083
  • 123 Jellusova J, Nitschke L. Regulation of B cell functions by the sialic acid-binding receptors siglec-G and CD22. Front Immunol 2012; 2: 96
  • 124 Moghimi B, Sack BK, Nayak S, Markusic DM, Mah CS, Herzog RW. Induction of tolerance to factor VIII by transient co-administration with rapamycin. J Thromb Haemost 2011; 9 (08) 1524-1533
  • 125 Maldonado RA, LaMothe RA, Ferrari JD. , et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc Natl Acad Sci U S A 2015; 112 (02) E156-E165
  • 126 Joly MS, Martin RP, Mitra-Kaushik S. , et al. Transient low-dose methotrexate generates B regulatory cells that mediate antigen-specific tolerance to alglucosidase alfa. J Immunol 2014; 193 (08) 3947-3958
  • 127 Liu CL, Ye P, Lin J, Djukovic D, Miao CH. Long-term tolerance to factor VIII is achieved by administration of interleukin-2/interleukin-2 monoclonal antibody complexes and low dosages of factor VIII. J Thromb Haemost 2014; 12 (06) 921-931
  • 128 Kim YC, Zhang A-H, Su Y. , et al. Engineered antigen-specific human regulatory T cells: immunosuppression of FVIII-specific T- and B-cell responses. Blood 2015; 125 (07) 1107-1115
  • 129 Gupta N, Culina S, Meslier Y. , et al. Regulation of immune responses to protein therapeutics by transplacental induction of T cell tolerance. Sci Transl Med 2015; 7 (275) 275ra21
  • 130 Rawle FE, Pratt KP, Labelle A, Weiner HL, Hough C, Lillicrap D. Induction of partial immune tolerance to factor VIII through prior mucosal exposure to the factor VIII C2 domain. J Thromb Haemost 2006; 4 (10) 2172-2179
  • 131 Sherman A, Su J, Lin S, Wang X, Herzog RW, Daniell H. Suppression of inhibitor formation against FVIII in a murine model of hemophilia A by oral delivery of antigens bioencapsulated in plant cells. Blood 2014; 124 (10) 1659-1668
  • 132 Antoni G, Oudot-Mellakh T, Dimitromanolakis A. , et al. Combined analysis of three genome-wide association studies on vWF and FVIII plasma levels. BMC Med Genet 2011; 12: 102
  • 133 Swystun LL, Notley C, Georgescu I, James PD, Lillicrap D. The endothelial lectin receptor CLEC4M internalizes factor VIII and von Willebrand factor via a clathrin-coated pit-dependent mechanism [abstract]. Blood 2013; 122 (21) 1091