Semin Liver Dis 2018; 38(03): 252-259
DOI: 10.1055/s-0038-1661371
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Emerging Importance of Liver Sinusoidal Endothelial Cells in Regulating Injury during Machine Perfusion of Deceased Liver Donors

Ricky H. Bhogal
1   Centre for Liver Research, Institute for Biomedical Research, University of Birmingham College of Medical and Dental Sciences, The Medical School, Birmingham, United Kingdom
,
Hynek Mergental
1   Centre for Liver Research, Institute for Biomedical Research, University of Birmingham College of Medical and Dental Sciences, The Medical School, Birmingham, United Kingdom
,
Darius F. Mirza
1   Centre for Liver Research, Institute for Biomedical Research, University of Birmingham College of Medical and Dental Sciences, The Medical School, Birmingham, United Kingdom
,
Simon C. Afford
1   Centre for Liver Research, Institute for Biomedical Research, University of Birmingham College of Medical and Dental Sciences, The Medical School, Birmingham, United Kingdom
› Author Affiliations
Further Information

Publication History

Publication Date:
24 July 2018 (online)

Abstract

While majority of liver transplants worldwide continue to be performed using deceased donor organs, the demands for donor livers continues to exceed the current supply. In an attempt to maximize the number of potentially usable donor livers and expand the current donor pool, there is intense global research by various groups exploring the role of machine perfusion in the liver transplantation, particularly with respect to the machine perfusion of extended-criteria liver donors. In this review, the authors summarize the current field of machine perfusion strategies as applied to deceased donor liver transplantation and how therapeutic targeting of the liver sinusoidal endothelial cell may improve the quality of donor livers.

 
  • References

  • 1 Kim WR, Stock PG, Smith JM. , et al. OPTN/SRTR 2011 annual data report: liver. Am J Transplant 2013; 13 (Suppl. 01) 73-102
  • 2 Hart A, Schladt DP, Zeglin J. , et al. Predicting outcomes on the liver transplant waiting list in the United States: accounting for large regional variation in organ availability and priority allocation points. Transplantation 2016; 100 (10) 2153-2159
  • 3 Vodkin I, Kuo A. Extended criteria donors in liver transplantation. Clin Liver Dis 2017; 21 (02) 289-301
  • 4 Jay CL, Lyuksemburg V, Ladner DP. , et al. Ischemic cholangiopathy after controlled donation after cardiac death liver transplantation: a meta-analysis. Ann Surg 2011; 253 (02) 259-264
  • 5 Selck FW, Grossman EB, Ratner LE, Renz JF. Utilization, outcomes, and retransplantation of liver allografts from donation after cardiac death: implications for further expansion of the deceased-donor pool. Ann Surg 2008; 248 (04) 599-607
  • 6 Harring TR, Nguyen NT, Cotton RT. , et al. Liver transplantation with donation after cardiac death donors: a comprehensive update. J Surg Res 2012; 178 (01) 502-511
  • 7 Jay C, Ladner D, Wang E. , et al. A comprehensive risk assessment of mortality following donation after cardiac death liver transplant: an analysis of the national registry. J Hepatol 2011; 55 (04) 808-813
  • 8 Trivedi PJ, Scalera I, Slaney E. , et al. Clinical outcomes of donation after circulatory death liver transplantation in primary sclerosing cholangitis. J Hepatol 2017; 67 (05) 957-965
  • 9 Singhal A, Sezginsoy B, Ghuloom AE, Hutchinson IV, Cho YW, Jabbour N. Orthotopic liver transplant using allografts from geriatric population in the United States: is there any age limit?. Exp Clin Transplant 2010; 8 (03) 196-201
  • 10 Spitzer AL, Lao OB, Dick AA. , et al. The biopsied donor liver: incorporating macrosteatosis into high-risk donor assessment. Liver Transpl 2010; 16 (07) 874-884
  • 11 Schlegel A, Kron P, Dutkowski P. Hypothermic machine perfusion in liver transplantation. Curr Opin Organ Transplant 2016; 21 (03) 308-314
  • 12 Dutkowski P, Polak WG, Muiesan P. , et al. First comparison of hypothermic oxygenated perfusion versus static cold storage of human donation after cardiac death liver transplants: an international-matched case analysis. Ann Surg 2015; 262 (05) 764-770 , discussion 770–771
  • 13 Schlegel A, Kron P, Graf R, Clavien PA, Dutkowski P. Hypothermic Oxygenated Perfusion (HOPE) downregulates the immune response in a rat model of liver transplantation. Ann Surg 2014; 260 (05) 931-937 , discussion 937–938
  • 14 Yang Z, Zhong Z, Li M. , et al. Hypothermic machine perfusion increases A20 expression which protects renal cells against ischemia/reperfusion injury by suppressing inflammation, apoptosis and necroptosis. Int J Mol Med 2016; 38 (01) 161-171
  • 15 de Rougemont O, Dutkowski P, Clavien PA. Biological modulation of liver ischemia-reperfusion injury. Curr Opin Organ Transplant 2010; 15 (02) 183-189
  • 16 Guan LY, Fu PY, Li PD. , et al. Mechanisms of hepatic ischemia-reperfusion injury and protective effects of nitric oxide. World J Gastrointest Surg 2014; 6 (07) 122-128
  • 17 Moers C, Smits JM, Maathuis MH. , et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med 2009; 360 (01) 7-19
  • 18 Guarrera JV, Henry SD, Samstein B. , et al. Hypothermic machine preservation in human liver transplantation: the first clinical series. Am J Transplant 2010; 10 (02) 372-381
  • 19 Jochmans I, Akhtar MZ, Nasralla D. , et al. Past, present, and future of dynamic kidney and liver preservation and resuscitation. Am J Transplant 2016; 16 (09) 2545-2555
  • 20 Ceresa CDL, Nasralla D, Coussios CC, Friend PJ. The case for normothermic machine perfusion in liver transplantation. Liver Transpl 2018; 24 (02) 269-275
  • 21 Selten J, Schlegel A, de Jonge J, Dutkowski P. Hypo- and normothermic perfusion of the liver: Which way to go?. Best Pract Res Clin Gastroenterol 2017; 31 (02) 171-179
  • 22 Guarrera JV, Henry SD, Samstein B. , et al. Hypothermic machine preservation facilitates successful transplantation of “orphan” extended criteria donor livers. Am J Transplant 2015; 15 (01) 161-169
  • 23 Schlegel A, Kron P, De Oliveira ML, Clavien PA, Dutkowski P. Is single portal vein approach sufficient for hypothermic machine perfusion of DCD liver grafts?. J Hepatol 2016; 64 (01) 239-241
  • 24 Op den Dries S, Sutton ME, Karimian N. , et al. Hypothermic oxygenated machine perfusion prevents arteriolonecrosis of the peribiliary plexus in pig livers donated after circulatory death. PLoS One 2014; 9 (02) e88521
  • 25 Schlegel A, de Rougemont O, Graf R, Clavien PA, Dutkowski P. Protective mechanisms of end-ischemic cold machine perfusion in DCD liver grafts. J Hepatol 2013; 58 (02) 278-286
  • 26 Schlegel A, Graf R, Clavien PA, Dutkowski P. Hypothermic oxygenated perfusion (HOPE) protects from biliary injury in a rodent model of DCD liver transplantation. J Hepatol 2013; 59 (05) 984-991
  • 27 Brüggenwirth IMA, Burlage LC, Porte RJ, Martins PN. Is single portal vein perfusion the best approach for machine preservation of liver grafts?. J Hepatol 2016; 64 (05) 1194-1195
  • 28 Schlegel A, Kron P, de Oliveira ML, Clavien PA, Dutkowski P. Reply to ‘Is single portal vein perfusion the best approach for machine preservation of liver grafts?’. J Hepatol 2016; 64 (05) 1195-1196
  • 29 van Rijn R, Karimian N, Matton APM. , et al. Dual hypothermic oxygenated machine perfusion in liver transplants donated after circulatory death. Br J Surg 2017; 104 (07) 907-917
  • 30 Fondevila C, Hessheimer AJ, Maathuis MHJ. , et al. Hypothermic oxygenated machine perfusion in porcine donation after circulatory determination of death liver transplant. Transplantation 2012; 94 (01) 22-29
  • 31 Chouchani ET, Pell VR, James AM. , et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab 2016; 23 (02) 254-263
  • 32 Chouchani ET, Pell VR, Gaude E. , et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014; 515 (7527): 431-435
  • 33 van Golen RF, Reiniers MJ, Vrisekoop N. , et al. The mechanisms and physiological relevance of glycocalyx degradation in hepatic ischemia/reperfusion injury. Antioxid Redox Signal 2014; 21 (07) 1098-1118
  • 34 Kocian R, Spahn DR. Haemoglobin, oxygen carriers and perioperative organ perfusion. Best Pract Res Clin Anaesthesiol 2008; 22 (01) 63-80
  • 35 Laing RW, Bhogal RH, Wallace L. , et al. The use of an acellular oxygen carrier in a human liver model of normothermic machine perfusion. Transplantation 2017; 101 (11) 2746-2756
  • 36 Matton APM, Burlage LC, van Rijn R. , et al. Normothermic machine perfusion of donor livers without the need for human blood products. Liver Transpl 2018; 24 (04) 528-538
  • 37 Ravikumar R, Jassem W, Mergental H. , et al. Liver transplantation after ex vivo normothermic machine preservation: a phase 1 (first-in-man) clinical trial. Am J Transplant 2016; 16 (06) 1779-1787
  • 38 Mergental H, Perera MT, Laing RW. , et al. Transplantation of declined liver allografts following normothermic ex-situ evaluation. Am J Transplant 2016; 16 (11) 3235-3245
  • 39 Perera T, Mergental H, Stephenson B. , et al. First human liver transplantation using a marginal allograft resuscitated by normothermic machine perfusion. Liver Transpl 2016; 22 (01) 120-124
  • 40 Angelico R, Perera MT, Ravikumar R. , et al. Normothermic machine perfusion of deceased donor liver grafts is associated with improved postreperfusion hemodynamics. Transplant Direct 2016; 2 (09) e97
  • 41 Laing RW, Mergental H, Yap C. , et al. Viability testing and transplantation of marginal livers (VITTAL) using normothermic machine perfusion: study protocol for an open-label, non-randomised, prospective, single-arm trial. BMJ Open 2017; 7 (11) e017733
  • 42 Jamieson RW, Zilvetti M, Roy D. , et al. Hepatic steatosis and normothermic perfusion-preliminary experiments in a porcine model. Transplantation 2011; 92 (03) 289-295
  • 43 Boteon YL, Laing R, Mergental H. , et al. Mechanisms of autophagy activation in endothelial cell and their targeting during normothermic machine liver perfusion. World J Gastroenterol 2017; 23 (48) 8443-8451
  • 44 Bruinsma BG, Berendsen TA, Izamis ML, Yarmush ML, Uygun K. Determination and extension of the limits to static cold storage using subnormothermic machine perfusion. Int J Artif Organs 2013; 36 (11) 775-780
  • 45 Knaak JM, Spetzler VN, Goldaracena N. , et al. Subnormothermic ex vivo liver perfusion reduces endothelial cell and bile duct injury after donation after cardiac death pig liver transplantation. Liver Transpl 2014; 20 (11) 1296-1305
  • 46 Furukori M, Matsuno N, Meng LT. , et al. Subnormothermic machine perfusion preservation with rewarming for donation after cardiac death liver grafts in pigs. Transplant Proc 2016; 48 (04) 1239-1243
  • 47 Hoyer DP, Mathé Z, Gallinat A. , et al. Controlled oxygenated rewarming of cold stored livers prior to transplantation: first clinical application of a new concept. Transplantation 2016; 100 (01) 147-152
  • 48 Bae C, Henry SD, Guarrera JV. Is extracorporeal hypothermic machine perfusion of the liver better than the ‘good old icebox’?. Curr Opin Organ Transplant 2012; 17 (02) 137-142
  • 49 Maslak E, Gregorius A, Chlopicki S. Liver sinusoidal endothelial cells (LSECs) function and NAFLD; NO-based therapy targeted to the liver. Pharmacol Rep 2015; 67 (04) 689-694
  • 50 Caldwell-Kenkel JC, Thurman RG, Lemasters JJ. Selective loss of nonparenchymal cell viability after cold ischemic storage of rat livers. Transplantation 1988; 45 (04) 834-837
  • 51 Rauen U, Elling B, Gizewski ER, Korth HG, Sustmann R, de Groot H. Involvement of reactive oxygen species in the preservation injury to cultured liver endothelial cells. Free Radic Biol Med 1997; 22 (1-2): 17-24
  • 52 Lasnier E, Blanc MC, Roch-Arveiller M, Housset C. Interaction between polymorphonuclear leukocytes and hepatic sinusoidal endothelial cells. Role of elastase. In: Wisse E, Knook DL, de Zanger R, Fraser R. , eds. Cells of the Hepatic Sinusoid. 7th vol. Leiden, The Netherlands: The Kupffer Cell Foundation; 1998: 125-126
  • 53 Nishimura Y, Takei Y, Kawano S. , et al. Expression of ICAM-1 is involved in the mechanism of liver injury after orthotopic liver transplantation. In: Wisse E, Knook DL, Wake K. , eds. Cells of the Hepatic Sinusoid. . 5th vol. Leiden, The Netherlands: The Kupffer Cell Foundation; 1994: 231-233
  • 54 Caldwell-Kenkel JC, Currin RT, Tanaka Y, Thurman RG, Lemasters JJ. Reperfusion injury to endothelial cells following cold ischemic storage of rat livers. Hepatology 1989; 10 (03) 292-299
  • 55 Russo L, Gracia-Sancho J, García-Calderó H. , et al. Addition of simvastatin to cold storage solution prevents endothelial dysfunction in explanted rat livers. Hepatology 2012; 55 (03) 921-930
  • 56 Yuan X, Theruvath AJ, Ge X. , et al. Machine perfusion or cold storage in organ transplantation: indication, mechanisms, and future perspectives. Transpl Int 2010; 23 (06) 561-570
  • 57 Fondevila C, Hessheimer AJ, Maathuis MH. , et al. Superior preservation of DCD livers with continuous normothermic perfusion. Ann Surg 2011; 254 (06) 1000-1007
  • 58 García-Valdecasas JC, Fondevila C. In-vivo normothermic recirculation: an update. Curr Opin Organ Transplant 2010; 15 (02) 173-176
  • 59 Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995; 75 (03) 519-560
  • 60 Shah V, Haddad FG, Garcia-Cardena G. , et al. Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest 1997; 100 (11) 2923-2930
  • 61 Parmar KM, Larman HB, Dai G. , et al. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 2006; 116 (01) 49-58
  • 62 Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury. J Hepatol 2017; 66 (01) 86-94
  • 63 Golse N, Bucur PO, Adam R, Castaing D, Sa Cunha A, Vibert E. New paradigms in post-hepatectomy liver failure. J Gastrointest Surg 2013; 17 (03) 593-605
  • 64 Wang B, Zhao L, Fish M, Logan CY, Nusse R. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature 2015; 524 (7564): 180-185
  • 65 LeCouter J, Moritz DR, Li B. , et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 2003; 299 (5608): 890-893
  • 66 DeLeve LD, Wang X, Wang L. VEGF-sdf1 recruitment of CXCR7+ bone marrow progenitors of liver sinusoidal endothelial cells promotes rat liver regeneration. Am J Physiol Gastrointest Liver Physiol 2016; 310 (09) G739-G746
  • 67 Wakabayashi T, Naito H, Suehiro JI. , et al. CD157 Marks Tissue-Resident Endothelial Stem Cells with Homeostatic and Regenerative Properties. Cell Stem Cell 2018; 22 (03) 384-397.e6
  • 68 Shido K, Chavez D, Cao Z, Ko J, Rafii S, Ding BS. Platelets prime hematopoietic and vascular niche to drive angiocrine-mediated liver regeneration. Signal Transduct Target Ther 2017; 2: e16044
  • 69 DeLeve LD. Liver sinusoidal endothelial cells and liver regeneration. J Clin Invest 2013; 123 (05) 1861-1866
  • 70 Hu J, Srivastava K, Wieland M. , et al. Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat. Science 2014; 343 (6169): 416-419
  • 71 Wang L, Wang X, Wang L. , et al. Hepatic vascular endothelial growth factor regulates recruitment of rat liver sinusoidal endothelial cell progenitor cells. Gastroenterology 2012; 143 (06) 1555-1563.e2
  • 72 Ding BS, Cao Z, Lis R. , et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 2014; 505 (7481): 97-102
  • 73 Deleve LD, Wang X, Guo Y. Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology 2008; 48 (03) 920-930
  • 74 Stewart RK, Dangi A, Huang C. , et al. A novel mouse model of depletion of stellate cells clarifies their role in ischemia/reperfusion- and endotoxin-induced acute liver injury. J Hepatol 2014; 60 (02) 298-305
  • 75 Lu D, Wang W, Liu J, Qi L, Zhuang R, Zhuo J. , et al. Peroxiredoxins in inflammatory liver diseases and ischemic/reperfusion injury in liver transplantation. Food Chem Toxicol 2018; 113: 83-89
  • 76 Oda S, Takeuchi M, Akai S, Shirai Y, Tsuneyama K, Yokoi T. miRNA in rat liver sinusoidal endothelial cells and hepatocytes and application to circulating biomarkers that discern pathogenesis of liver injuries. Am J Pathol 2018; 188 (04) 916-928
  • 77 Compagnon P, Levesque E, Hentati H. , et al. An oxygenated and transportable machine perfusion system fully rescues liver grafts exposed to lethal ischemic damage in a pig model of DCD liver transplantation. Transplantation 2017; 101 (07) e205-e213
  • 78 Stevenson HL, Prats MM, Sasatomi E. Chemotherapy-induced Sinusoidal Injury (CSI) score: a novel histologic assessment of chemotherapy-related hepatic sinusoidal injury in patients with colorectal liver metastasis. BMC Cancer 2017; 17 (01) 35
  • 79 Fisher J, Douglas JJ, Linder A, Boyd JH, Walley KR, Russell JA. Elevated plasma angiopoietin-2 levels are associated with fluid overload, organ dysfunction, and mortality in human septic shock. Crit Care Med 2016; 44 (11) 2018-2027
  • 80 Li W, Zhang R, Guo J, Shao H, Yang X. Protective effect of R. glutinosa oligosaccharides against high L-carnitine diet-induced endothelial dysfunction and hepatic injury in mice. Int J Biol Macromol 2016; 85: 285-293
  • 81 Zhong Z, Ye S, Xiong Y. , et al. Decreased expression of mitochondrial aldehyde dehydrogenase-2 induces liver injury via activation of the mitogen-activated protein kinase pathway. Transpl Int 2016; 29 (01) 98-107
  • 82 Kato H, Kuriyama N, Duarte S, Clavien PA, Busuttil RW, Coito AJ. MMP-9 deficiency shelters endothelial PECAM-1 expression and enhances regeneration of steatotic livers after ischemia and reperfusion injury. J Hepatol 2014; 60 (05) 1032-1039