Semin Hear 2018; 39(03): 305-320
DOI: 10.1055/s-0038-1666820
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Cochlear Implants and Children with Vestibular Impairments

Sharon L. Cushing
1   Department of Otolaryngology, Head and Neck Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
2   Cochlear Implant Program, Hospital for Sick Children, Toronto, Ontario, Canada
3   Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada
4   Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
,
Blake C. Papsin
1   Department of Otolaryngology, Head and Neck Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
3   Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada
4   Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
20. Juli 2018 (online)

Abstract

Sensorineural hearing loss (SNHL) in children occurs in 1 to 3% of live births and acquired hearing loss can additionally occur. This sensory deficit has far reaching consequences that have been shown to extend beyond speech and language development. Thankfully there are many therapeutic options that exist for these children with the aim of decreasing the morbidity of their hearing impairment. Of late, focus has shifted beyond speech and language outcomes to the overall performance of children with SNHL in real-world environments. To account for their residual deficits in such environments, clinicians must understand the extent of their sensory impairments. SNHL commonly coexists with other sensory deficits such as vestibular loss. Vestibular impairment is exceedingly common in children with SNHL with nearly half of children exhibiting vestibular end-organ dysfunction. These deficits naturally lead to impairments in balance and delay in motor milestones. However, this additional sensory deficit likely leads to further impairment in the performance of these children. This article focuses on the following:

1. Defining the coexistence of vestibular impairment in children with SNHL and cochlear implants.

2. Describing screening methods aimed at identifying vestibular dysfunction in children with SNHL.

3. Understanding the functional implications of this dual-sensory impairment.

4. Exploring possible rehabilitative strategies to minimize the impact of vestibular impairment in children with SNHL

 
  • References

  • 1 Pienkowski M, Harrison RV. Tone frequency maps and receptive fields in the developing chinchilla auditory cortex. J Neurophysiol 2005; 93 (01) 454-466
  • 2 Pienkowski M, Harrison RV. Tone responses in core versus belt auditory cortex in the developing chinchilla. J Comp Neurol 2005; 492 (01) 101-109
  • 3 Mount RJ, Takeno S, Wake M, Harrison RV. Carboplatin ototoxicity in the chinchilla: lesions of the vestibular sensory epithelium. Acta Otolaryngol Suppl 1995; 519: 60-65
  • 4 Harrison RV, Ibrahim D, Mount RJ. Plasticity of tonotopic maps in auditory midbrain following partial cochlear damage in the developing chinchilla. Exp Brain Res 1998; 123 (04) 449-460
  • 5 Brown TA, Harrison RV. Neuronal responses in chinchilla auditory cortex after postnatal exposure to frequency-modulated tones. Hear Res 2011; 275 (1-2): 8-16
  • 6 Brown TA, Harrison RV. Postnatal development of neuronal responses to frequency-modulated tones in chinchilla auditory cortex. Brain Res 2010; 1309: 29-39
  • 7 Brown TA, Harrison RV. Responses of neurons in chinchilla auditory cortex to frequency-modulated tones. J Neurophysiol 2009; 101 (04) 2017-2029
  • 8 Yamazaki H, Easwar V, Polonenko MJ. , et al. Cortical hemispheric asymmetries are present at young ages and further develop into adolescence. Hum Brain Mapp 2018; 39 (02) 941-954
  • 9 Jiwani S, Papsin BC, Gordon KA. Early unilateral cochlear implantation promotes mature cortical asymmetries in adolescents who are deaf. Hum Brain Mapp 2016; 37 (01) 135-152
  • 10 Jiwani S, Papsin BC, Gordon KA. Central auditory development after long-term cochlear implant use. Clin Neurophysiol 2013; 124 (09) 1868-1880
  • 11 Gordon KA, Jiwani S, Papsin BC. Benefits and detriments of unilateral cochlear implant use on bilateral auditory development in children who are deaf. Front Psychol 2013; 4: 719
  • 12 National Center for Hearing Assessment and Management (NCHAM). Epidemiology & Statistics Program, NIDCD, 11/2006
  • 13 Cushing SL, Gordon KA, Rutka JA, James AL, Papsin BC. Vestibular end-organ dysfunction in children with sensorineural hearing loss and cochlear implants: an expanded cohort and etiologic assessment. Otol Neurotol 2013; 34 (03) 422-428
  • 14 Buchman CA, Joy J, Hodges A, Telischi FF, Balkany TJ. Vestibular effects of cochlear implantation. Laryngoscope 2004; 114 (10, Pt 2; Suppl 103): 1-22
  • 15 Licameli G, Zhou G, Kenna MA. Disturbance of vestibular function attributable to cochlear implantation in children. Laryngoscope 2009; 119 (04) 740-745
  • 16 Selz PA, Girardi M, Konrad HR, Hughes LF. Vestibular deficits in deaf children. Otolaryngol Head Neck Surg 1996; 115 (01) 70-77
  • 17 Jacot E, Van Den Abbeele T, Debre HR, Wiener-Vacher SR. Vestibular impairments pre- and post-cochlear implant in children. Int J Pediatr Otorhinolaryngol 2009; 73 (02) 209-217
  • 18 Cushing SL, Papsin BC, Gordon KA. Incidence and characteristics of facial nerve stimulation in children with cochlear implants. Laryngoscope 2006; 116 (10) 1787-1791
  • 19 Cushing SL, James AL, Papsin BC, Gordon KA. The Vestibular Olympics: a test of dynamic balance function in children with cochlear implants. Arch Otorhinolaryngol 2008; 134 (01) 34-38
  • 20 De Kegel A, Maes L, Baetens T, Dhooge I, Van Waelvelde H. The influence of a vestibular dysfunction on the motor development of hearing-impaired children. Laryngoscope 2012; 122 (12) 2837-2843
  • 21 Ketola S, Niemensivu R, Henttonen A, Appelberg B, Kentala E. Somatoform disorders in vertiginous children and adolescents. Int J Pediatr Otorhinolaryngol 2009; 73 (07) 933-936
  • 22 Cushing SL, MacDonald L, Propst EJ. , et al. Successful cochlear implantation in a child with Keratosis, Icthiosis and Deafness (KID) Syndrome and Dandy-Walker malformation. Int J Pediatr Otorhinolaryngol 2008; 72 (05) 693-698
  • 23 Oyewumi M, Wolter NE, Heon E, Gordon KA, Papsin BC, Cushing SL. Using balance function to screen for vestibular impairment in children with sensorineural hearing loss and cochlear implants. Otol Neurotol 2016; 37 (07) 926-932
  • 24 Kletke S, Batmanabane V, Dai T. , et al. The combination of vestibular impairment and congenital sensorineural hearing loss predisposes patients to ocular anomalies, including Usher syndrome. Clin Genet 2017; 92 (01) 26-33
  • 25 Okumura T, Takahashi H, Honjo I. , et al. Vestibular function in patients with a large vestibular aqueduct. Acta Otolaryngol Suppl 1995; 520 (Pt 2): 323-326
  • 26 Abadie V, Wiener-Vacher S, Morisseau-Durand MP. , et al. Vestibular anomalies in CHARGE syndrome: investigations on and consequences for postural development. Eur J Pediatr 2000; 159 (08) 569-574
  • 27 Dollard SC, Grosse SD, Ross DS. New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev Med Virol 2007; 17 (05) 355-363
  • 28 Teissier N, Delezoide AL, Mas AE. , et al. Inner ear lesions in congenital cytomegalovirus infection of human fetuses. Acta Neuropathol 2011; 122 (06) 763-774
  • 29 Carraro M, Park AH, Harrison RV. Partial corrosion casting to assess cochlear vasculature in mouse models of presbycusis and CMV infection. Hear Res 2016; 332: 95-103
  • 30 Carraro M, Almishaal A, Hillas E, Firpo M, Park A, Harrison RV. Cytomegalovirus (CMV) infection causes degeneration of cochlear vasculature and hearing loss in a mouse model. J Assoc Res Otolaryngol 2017; 18 (02) 263-273
  • 31 Zagólski O. Vestibular-evoked myogenic potentials and caloric stimulation in infants with congenital cytomegalovirus infection. J Laryngol Otol 2008; 122 (06) 574-579
  • 32 Teissier N, Bernard S, Quesnel S, Van Den Abbeele T. Audiovestibular consequences of congenital cytomegalovirus infection. Eur Ann Otorhinolaryngol Head Neck Dis 2016; 133 (06) 413-418
  • 33 Nassar MN, Elmaleh M, Cohen A, Van Den Abbeele T, Wiener-Vacher SR, Teissier N. Vestibular calcification in a case of congenital cytomegalovirus infection. Otol Neurotol 2015; 36 (06) e107-e109
  • 34 Bernard S, Wiener-Vacher S, Van Den Abbeele T, Teissier N. Vestibular disorders in children with congenital cytomegalovirus infection. Pediatrics 2015; 136 (04) e887-e895
  • 35 Karltorp E, Löfkvist U, Lewensohn-Fuchs I. , et al. Impaired balance and neurodevelopmental disabilities among children with congenital cytomegalovirus infection. Acta Paediatr 2014; 103 (11) 1165-1173
  • 36 Baldwin RL, Sweitzer RS, Freind DB. Meningitis and sensorineural hearing loss. Laryngoscope 1985; 95 (7, Pt 1): 802-805
  • 37 Berlow SJ, Caldarelli DD, Matz GJ, Meyer DH, Harsch GG. Bacterial meningitis and sensorineural hearing loss: a prospective investigation. Laryngoscope 1980; 90 (09) 1445-1452
  • 38 Dodge PR, Davis H, Feigin RD. , et al. Prospective evaluation of hearing impairment as a sequela of acute bacterial meningitis. N Engl J Med 1984; 311 (14) 869-874
  • 39 Keane WM, Potsic WP, Rowe LD, Konkle DF. Meningitis and hearing loss in children. Arch Otolaryngol 1979; 105 (01) 39-44
  • 40 Nadol Jr JB. Hearing loss as a sequela of meningitis. Laryngoscope 1978; 88 (05) 739-755
  • 41 Kaplan SL, Goddard J, Van Kleeck M, Catlin FI, Feigin RD. Ataxia and deafness in children due to bacterial meningitis. Pediatrics 1981; 68 (01) 8-13
  • 42 Lindberg J, Rosenhall U, Nylén O, Ringnér A. Long-term outcome of Hemophilus influenzae meningitis related to antibiotic treatment. Pediatrics 1977; 60 (01) 1-6
  • 43 Merchant SN, Gopen Q. A human temporal bone study of acute bacterial meningogenic labyrinthitis. Am J Otol 1996; 17 (03) 375-385
  • 44 Cushing SL, Papsin BC, Rutka JA, James AL, Blaser SL, Gordon KA. Vestibular end-organ and balance deficits after meningitis and cochlear implantation in children correlate poorly with functional outcome. Otol Neurotol 2009; 30 (04) 488-495
  • 45 Wiener-Vacher SR, Obeid R, Abou-Elew M. Vestibular impairment after bacterial meningitis delays infant posturomotor development. J Pediatr 2012; 161 (02) 246-51.e1
  • 46 Talaska AE, Schacht J, Fischel-Ghodsian N. Molecular and genetic aspects of aminoglycoside-induced hearing loss. Drug Discov Today 2006; 3 (01) 119-124
  • 47 Phillips JA, Bell SC. Aminoglycosides in cystic fibrosis: a descriptive study of current practice in Australia. Intern Med J 2001; 31 (01) 23-26
  • 48 Knight KR, Kraemer DF, Winter C, Neuwelt EA. Early changes in auditory function as a result of platinum chemotherapy: use of extended high-frequency audiometry and evoked distortion product otoacoustic emissions. J Clin Oncol 2007; 25 (10) 1190-1195
  • 49 Vestibulotoxicity Following Paediatric Cancer Treatment. Society for Ear Nose and Throat Advances in Children; 2016 December 2–4, 2016; Orlando, FL
  • 50 Brookhouser PE, Cyr DG, Beauchaine KA. Vestibular findings in the deaf and hard of hearing. Otolaryngol Head Neck Surg 1982; 90 (06) 773-777
  • 51 Huygen PL, van Rijn PM, Cremers CW, Theunissen EJ. The vestibulo-ocular reflex in pupils at a Dutch school for the hearing impaired; findings relating to acquired causes. Int J Pediatr Otorhinolaryngol 1993; 25 (1-3): 39-47
  • 52 Rosenblut B, Goldstein R, Landau WM. Vestibular responses of some deaf and aphasic children. Ann Otol Rhinol Laryngol 1960; 69: 747-755
  • 53 Sandberg LE, Terkildsen K. Caloric tests in deaf children. Arch Otolaryngol 1965; 81: 350-354
  • 54 Goldstein R, Landau WM, Kleffner FR. Neurologic assessment of some deaf and aphasic children. Ann Otol Rhinol Laryngol 1958; 67 (02) 468-479
  • 55 Wolter NE, Cushing SL, Vilchez-Madrigal LD. , et al. Unilateral hearing loss is associated with impaired balance in children: a pilot study. Otol Neurotol 2016; 37 (10) 1589-1595
  • 56 Steele MA, Garcia F, Lowerison M, Gordon K, Metcalf JA, Hurtig M. Technical note: Three-dimensional imaging of rumen tissue for morphometric analysis using micro-computed tomography. J Dairy Sci 2014; 97 (12) 7691-7696
  • 57 Gordon K, Henkin Y, Kral A. Asymmetric hearing during development: the aural preference syndrome and treatment options. Pediatrics 2015; 136 (01) 141-153
  • 58 Sokolov M, Gordon KA, Polonenko M, Blaser SI, Papsin BC, Cushing SL. Vestibular and balance function is often impaired in children with profound unilateral sensorineural hearing loss. Hear Res 2018;S0378-5955(17)30437-9 DOI: 10.1016/j.heares.2018.03.032. . [Epub ahead of print]
  • 59 Park HM, Jung SW, Rhee CK. Vestibular diagnosis as prognostic indicator in sudden hearing loss with vertigo. Acta Otolaryngol Suppl 2001; 545: 80-83
  • 60 Sokolov M, Cushing SL, Polonenko M, Blaser SI, Papsin BC, Gordon KA. Clinical characteristics of children with single-sided deafness presenting for candidacy assessment for unilateral cochlear implantation. Curr Otorhinolaryngol Rep 2017; 5 (04) 275-285
  • 61 Cushing S, Gordon KA, Sokolov M. , et al. Congenital cytomegalovirus is a strong determinant of implant candidacy in single sided deafness. Triologic Society Meeting, Scottsdale AZ; Jan 18–20 2018
  • 62 Molony NC, Marais J. Balance after stapedectomy: the measurement of spontaneous sway by posturography. Clin Otolaryngol Allied Sci 1996; 21 (04) 353-356
  • 63 Spector M. Electronystagmography after stapedectomy. Ann Otol Rhinol Laryngol 1973; 82 (03) 374-377
  • 64 Eshraghi AA, Yang NW, Balkany TJ. Comparative study of cochlear damage with three perimodiolar electrode designs. Laryngoscope 2003; 113 (03) 415-419
  • 65 Gstoettner W, Plenk Jr H, Franz P. , et al. Cochlear implant deep electrode insertion: extent of insertional trauma. Acta Otolaryngol 1997; 117 (02) 274-277
  • 66 Kennedy DW. Multichannel intracochlear electrodes: mechanism of insertion trauma. Laryngoscope 1987; 97 (01) 42-49
  • 67 Richter B, Jaekel K, Aschendorff A, Marangos N, Laszig R. Cochlear structures after implantation of a perimodiolar electrode array. Laryngoscope 2001; 111 (05) 837-843
  • 68 Richter B, Aschendorff A, Lohnstein P, Husstedt H, Nagursky H, Laszig R. The nucleus contour electrode array: a radiological and histological study. Laryngoscope 2001; 111 (03) 508-514
  • 69 Rossi G, Bisetti MS. Cochlear implant and traumatic lesions secondary to electrode insertion. Rev Laryngol Otol Rhinol (Bord) 1998; 119 (05) 317-322
  • 70 Welling DB, Hinojosa R, Gantz BJ, Lee JT. Insertional trauma of multichannel cochlear implants. Laryngoscope 1993; 103 (09) 995-1001
  • 71 Kamakura T, Nadol Jr JB. Correlation between word recognition score and intracochlear new bone and fibrous tissue after cochlear implantation in the human. Hear Res 2016; 339: 132-141
  • 72 Tien HC, Linthicum Jr FH. Histopathologic changes in the vestibule after cochlear implantation. Otolaryngol Head Neck Surg 2002; 127 (04) 260-264
  • 73 Black FO. Present vestibular status of subjects implanted with auditory prostheses. Ann Otol Rhinol Laryngol Suppl 1977; 86 (3, Pt 3; Suppl 38): 49-56
  • 74 Black FO. Effects of the auditory prosthesis on postural stability. Ann Otol Rhinol Laryngol Suppl 1977; 86 (3, Pt 2; Suppl 38): 141-164
  • 75 Black FO, Lilly DJ, Peterka RJ, Fowler LP, Simmons FB. Vestibulo-ocular and vestibulospinal function before and after cochlear implant surgery. Ann Otol Rhinol Laryngol Suppl 1987; 96 (1, Pt 2): 106-108
  • 76 Cohen NL, Hoffman RA, Stroschein M. Medical or surgical complications related to the nucleus multichannel cochlear implant. Ann Otol Rhinol Laryngol Suppl 1988; 135: 8-13
  • 77 Enticott JC, Tari S, Koh SM, Dowell RC, O'Leary SJ. Cochlear implant and vestibular function. Otol Neurotol 2006; 27 (06) 824-830
  • 78 Huygen PL, van den Broek P, Spies TH, Mens LH, Admiraal RJ. Does intracochlear implantation jeopardize vestibular function?. Ann Otol Rhinol Laryngol 1994; 103 (8, Pt 1): 609-614
  • 79 Ito J. Influence of the multichannel cochlear implant on vestibular function. Otolaryngol Head Neck Surg 1998; 118 (06) 900-902
  • 80 Kempf HG, Johann K, Lenarz T. Complications in pediatric cochlear implant surgery. Eur Arch Otorhinolaryngol 1999; 256 (03) 128-132
  • 81 Kubo T, Yamamoto K, Iwaki T, Doi K, Tamura M. Different forms of dizziness occurring after cochlear implant. Eur Arch Otorhinolaryngol 2001; 258 (01) 9-12
  • 82 Ribári O, Küstel M, Szirmai A, Répássy G. Cochlear implantation influences contralateral hearing and vestibular responsiveness. Acta Otolaryngol 1999; 119 (02) 225-228
  • 83 Webb RL, Lehnhardt E, Clark GM, Laszig R, Pyman BC, Franz BK. Surgical complications with the cochlear multiple-channel intracochlear implant: experience at Hannover and Melbourne. Ann Otol Rhinol Laryngol 1991; 100 (02) 131-136
  • 84 Black FO, Peterka RJ, Elardo SM. Vestibular reflex changes following aminoglycoside induced ototoxicity. Laryngoscope 1987; 97 (05) 582-586
  • 85 Brey RH, Facer GW, Trine MB, Lynn SG, Peterson AM, Suman VJ. Vestibular effects associated with implantation of a multiple channel cochlear prosthesis. Am J Otol 1995; 16 (04) 424-430
  • 86 Chiong CM, Nedzelski JM, McIlmoyl LD, Shipp DB. Electro-oculographic findings pre- and post-cochlear implantation. J Otolaryngol 1994; 23 (06) 447-449
  • 87 Chouard CH, Fugain C, Meyer B, Gegu D. Prognostic evaluation of the multichannel cochlear implant. Acta Otolaryngol Suppl 1984; 411: 161-164
  • 88 Eisenberg LS, Nelson JR, House WF. Effects of the single-electrode cochlear implant on the vestibular system of the profoundly deaf adult. Ann Otol Rhinol Laryngol Suppl 1982; 91 (2, Pt 3): 47-54
  • 89 Higgins KM, Chen JM, Nedzelski JM, Shipp DB, McIlmoyl LD. A matched-pair comparison of two cochlear implant systems. J Otolaryngol 2002; 31 (02) 97-105
  • 90 Huygen PL, Hinderink JB, van den Broek P. , et al. The risk of vestibular function loss after intracochlear implantation. Acta Otolaryngol Suppl 1995; 520 (Pt 2): 270-272
  • 91 Kiyomizu K, Tono T, Komune S, Ushisako Y, Morimitsu T. Dizziness and vertigo after cochlear implantation. Adv Otorhinolaryngol 2000; 57: 173-175
  • 92 Rossi G, Solero P, Rolando M, Spadola Bisetti M. Vestibular function and cochlear implant. ORL J Otorhinolaryngol Relat Spec 1998; 60 (02) 85-87
  • 93 van den Broek P, Huygen PL, Mens LH, Admiraal RJ, Spies T. Vestibular function in cochlear implant patients. Acta Otolaryngol 1993; 113 (03) 263-265
  • 94 Vibert D, Häusler R, Kompis M, Vischer M. Vestibular function in patients with cochlear implantation. Acta Otolaryngol Suppl 2001; 545: 29-34
  • 95 Migliaccio AA, Della Santina CC, Carey JP, Niparko JK, Minor LB. The vestibulo-ocular reflex response to head impulses rarely decreases after cochlear implantation. Otol Neurotol 2005; 26 (04) 655-660
  • 96 Jin Y, Nakamura M, Shinjo Y, Kaga K. Vestibular-evoked myogenic potentials in cochlear implant children. Acta Otolaryngol 2006; 126 (02) 164-169
  • 97 Impact of cochlear implant of vestibular function in children and decision between two steps or one step bilateral implant. 12th European Symposium on Pediatric Cochlear Implants; June 18–21, 2015; Toulouse, France
  • 98 Thierry B, Blanchard M, Leboulanger N. , et al. Cochlear implantation and vestibular function in children. Int J Pediatr Otorhinolaryngol 2015; 79 (02) 101-104
  • 99 Cushing SL, Papsin BC, Rutka JA, James AL, Gordon KA. Evidence of vestibular and balance dysfunction in children with profound sensorineural hearing loss using cochlear implants. Laryngoscope 2008; 118 (10) 1814-1823
  • 100 Shumway-Cook A, Woollacott MH. The growth of stability: postural control from a development perspective. J Mot Behav 1985; 17 (02) 131-147
  • 101 Bruininks R, Bruininks B. BOT-2 Bruininks-Oseretsky Test of Motor Proficiency. 2nd ed. Circle Pines: AGS Publishing; 2005
  • 102 Cohen B. Erasmus Darwin's observations on rotation and vertigo. Hum Neurobiol 1984; 3 (03) 121-128
  • 103 Effgen SK. Effect of an exercise program on the static balance of deaf children. Phys Ther 1981; 61 (06) 873-877
  • 104 Verhagen WI, Huygen PL, Horstink MW. Familial congenital vestibular areflexia. J Neurol Neurosurg Psychiatry 1987; 50 (07) 933-935
  • 105 Wolter NE, Gordon KA, Papsin BC, Cushing SL. Vestibular and balance impairment contributes to cochlear implant failure in children. Otol Neurotol 2015; 36 (06) 1029-1034
  • 106 Eskander A, Gordon KA, Kadhim L. , et al. Low pediatric cochlear implant failure rate: contributing factors in large-volume practice. Arch Otolaryngol Head Neck Surg 2011; 137 (12) 1190-1196
  • 107 Chung D, Kim AH, Parisier S. , et al. Revision cochlear implant surgery in patients with suspected soft failures. Otol Neurotol 2010; 31 (08) 1194-1198
  • 108 Weise JB, Muller-Deile J, Brademann G, Meyer JE, Ambrosch P, Maune S. Impact to the head increases cochlear implant reimplantation rate in children. Auris Nasus Larynx 2005; 32 (04) 339-343
  • 109 Bigelow RT, Agrawal Y. Vestibular involvement in cognition: visuospatial ability, attention, executive function, and memory. J Vestib Res 2015; 25 (02) 73-89
  • 110 Brandt T, Schautzer F, Hamilton DA. , et al. Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 2005; 128 (Pt 11): 2732-2741
  • 111 Cohen HS, Kimball KT. Improvements in path integration after vestibular rehabilitation. J Vestib Res 2002; 12 (01) 47-51
  • 112 Yardley L, Papo D, Bronstein A. , et al. Attentional demands of continuously monitoring orientation using vestibular information. Neuropsychologia 2002; 40 (04) 373-383
  • 113 Beer J, Kronenberger WG, Castellanos I, Colson BG, Henning SC, Pisoni DB. Executive functioning skills in preschool-age children with cochlear implants. J Speech Lang Hear Res 2014; 57 (04) 1521-1534
  • 114 Franco ES, Panhoca I. Vestibular function in children underperforming at school. Rev Bras Otorrinolaringol (Engl Ed) 2008; 74 (06) 815-825
  • 115 Wiener-Vacher SR, Hamilton DA, Wiener SI. Vestibular activity and cognitive development in children: perspectives. Front Integr Nuerosci 2013; 7: 92
  • 116 Wolter N, Campos J, Gordon K, Vilchez-Madrigal LD, Papsin BC, Cushing SL. Compensatory Strategies in Children with Bilateral Vestibular Loss Using Cochlear Implants. Combined Otolaryngology Spring Meeting. Boston, MA: 2015
  • 117 Parkes WJ, Gnanasegaram JJ, Cushing SL, McKnight CL, Papsin BC, Gordon KA. Vestibular evoked myogenic potential testing as an objective measure of vestibular stimulation with cochlear implants. Laryngoscope 2017; 127 (02) E75-E81
  • 118 Gnanasegaram JJ, Parkes WJ, Cushing SL, McKnight CL, Papsin BC, Gordon KA. Stimulation from cochlear implant electrodes assists with recovery from asymmetric perceptual tilt: evidence from the subjective visual vertical test. Front Integr Nuerosci 2016; 10: 32
  • 119 Lewis RF, Gong W, Ramsey M, Minor L, Boyle R, Merfeld DM. Vestibular adaptation studied with a prosthetic semicircular canal. J Vestib Res 2002- 2003; 12 (2-3): 87-94
  • 120 Fridman GY, Della Santina CC. Progress toward development of a multichannel vestibular prosthesis for treatment of bilateral vestibular deficiency. Anat Rec (Hoboken) 2012; 295 (11) 2010-2029
  • 121 Della Santina CC, Migliaccio AA, Patel AH. A multichannel semicircular canal neural prosthesis using electrical stimulation to restore 3-d vestibular sensation. IEEE Trans Biomed Eng 2007; 54 (6, Pt 1): 1016-1030
  • 122 Wall III C, Kos MI, Guyot JP. Eye movements in response to electric stimulation of the human posterior ampullary nerve. Ann Otol Rhinol Laryngol 2007; 116 (05) 369-374
  • 123 Guyot JP, Sigrist A, Pelizzone M, Feigl GC, Kos MI. Eye movements in response to electrical stimulation of the lateral and superior ampullary nerves. Ann Otol Rhinol Laryngol 2011; 120 (02) 81-87
  • 124 Guyot JP, Sigrist A, Pelizzone M, Kos MI. Adaptation to steady-state electrical stimulation of the vestibular system in humans. Ann Otol Rhinol Laryngol 2011; 120 (03) 143-149
  • 125 van de Berg R, Guinand N, Nguyen TA. , et al. The vestibular implant: frequency-dependency of the electrically evoked vestibulo-ocular reflex in humans. Front Syst Neurosci 2015; 8: 255
  • 126 Perez Fornos A, Guinand N, van de Berg R. , et al. Artificial balance: restoration of the vestibulo-ocular reflex in humans with a prototype vestibular neuroprosthesis. Front Neurol 2014; 5: 66
  • 127 Kos MI, Feigl G, Anderhuber F, Wall C, Fasel JH, Guyot JP. Transcanal approach to the singular nerve. Otol Neurotol 2006; 27 (04) 542-546
  • 128 Shea S. Developmental Assessment. 2nd ed. Philadelphia, PA: Churchill Livingstone; 1997