CC BY-NC-ND 4.0 · Yearb Med Inform 2018; 27(01): 211-222
DOI: 10.1055/s-0038-1667085
Section 11: Cancer Informatics
Survey
Georg Thieme Verlag KG Stuttgart

The Omics Revolution Continues: The Maturation of High-Throughput Biological Data Sources

Ewy Mathé
1   Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
,
John L. Hays
2   Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
3   Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, USA
,
Daniel G. Stover
2   Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
,
James L. Chen
2   Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
1   Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
29 August 2018 (online)

Summary

Objective: The aim is to provide a comprehensive review of state-of-the art omics approaches, including proteomics, metabolomics, cell-free DNA, and patient cohort matching algorithms in precision oncology.

Methods: In the past several years, the cancer informatics revolution has been the beneficiary of a data explosion. Different complementary omics technologies have begun coming into their own to provide a more nuanced view of the patient-tumor interaction beyond that of DNA alterations. A combined approach is beneficial to the patient as nearly all new cancer therapeutics are designed with an omics biomarker in mind. Proteomics and metabolomics provide us with a means of assaying in real-time the response of the tumor to treatment. Circulating cell-free DNA may allow us to better understand tumor heterogeneity and interactions with the host genome.

Results: Integration of increasingly available omics data increases our ability to segment patients into smaller and smaller cohorts, thereby prompting a shift in our thinking about how to use these omics data. With large repositories of patient omics-outcomes data being generated, patient cohort matching algorithms have become a dominant player.

Conclusions: The continued promise of precision oncology is to select patients who are most likely to benefit from treatment and to avoid toxicity for those who will not. The increased public availability of omics and outcomes data in patients, along with improved computational methods and resources, are making precision oncology a reality.

 
  • References

  • 1 Goossens N, Nakagawa S, Sun X, Hoshida Y. Cancer biomarker discovery and validation. Transl Cancer Res 2015; 4 (03) 256-69
  • 2 U.S. Food and Drug Adminstration. Paving the way for personalized medicine: FDA's role in a new era of medical product development; 2013. Available from: https://dx.advamed.org/sites/dx.advamed.org/files/resource/fda_report_on_paving_the_way_for_personalized_medicine.pdf . Accessed May 9, 2018
  • 3 Catenacci DV. Next-generation clinical trials: Novel strategies to address the challenge of tumor molecular heterogeneity. Mol Oncol 2015; 9 (05) 967-96
  • 4 Akhmetov I, Bubnov RV. Assessing value of innovative molecular diagnostic tests in the concept of predictive, preventive, and personalized medicine. EPMA J 2015; 6: 19
  • 5 Koren G. Personalized medicine-disregarding the obvious: analysis of trends among articles published on “Personalized Medicine”. Ther Drug Monit 2015; 37 (05) 559
  • 6 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521 (7553): 436-44
  • 7 Brower V. NCI-MATCH pairs tumor mutations with matching drugs. Nat Biotechnol 2015; 33 (08) 790-1
  • 8 Bouquie R, Gregoire M, Hernando H, Azoulay C, Dailly E, Monteil-Ganiere C. , et al. Evaluation of a methotrexate chemiluminescent microparticle immunoassay: comparison to fluorescence polarization immunoassay and liquid chromatography- tandem mass spectrometry. Am J Clin Pathol 2016; 146 (01) 119-24
  • 9 Yang JY, Yoshihara K, Tanaka K, Hatae M, Masuzaki H, Itamochi H. , et al. Predicting time to ovarian carcinoma recurrence using protein markers. J Clin Invest 2013; 123 (09) 3740-50
  • 10 Cardnell RJ, Feng Y, Diao L, Fan YH, Masrorpour F, Wang J. , et al. Proteomic markers of DNA repair and PI3K pathway activation predict response to the PARP inhibitor BMN 673 in small cell lung cancer. Clin Cancer Res 2013; 19 (22) 6322-8
  • 11 Sohn J, Do KA, Liu S, Chen H, Mills GB, Hortobagyi GN. , et al. Functional proteomics characterization of residual triple-negative breast cancer after standard neoadjuvant chemotherapy. Ann Oncol 2013; 24 (10) 2522-6
  • 12 Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A. , et al. Proteomics Tissue-based map of the human proteome. Science 2015; 347 (6220): 1260419
  • 13 Li J, Akbani R, Zhao W, Lu Y, Weinstein JN, Mills GB. , et al. Explore, visualize, and analyze functional cancer proteomic data using the Cancer Proteome Atlas. Can Res 2017; 77 (21) e51-e4
  • 14 Vidova V, Spacil Z. A review on mass spectrometry- based quantitative proteomics: Targeted and data independent acquisition. Anal Chim Acta 2017; 964: 7-23
  • 15 Hoofnagle AN, Becker JO, Oda MN, Cavigiolio G, Mayer P, Vaisar T. Multiple-reaction monitoring- mass spectrometric assays can accurately measure the relative protein abundance in complex mixtures. Clin Chem 2012; 58 (04) 777-81
  • 16 Mao X, He J, Li T, Lu Z, Sun J, Meng Y. , et al. Application of imaging mass spectrometry for the molecular diagnosis of human breast tumors. Sci Rep 2016; 6: 21043
  • 17 Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res 2017
  • 18 Chen TW, Lee CC, Liu H, Wu CS, Pickering CR, Huang PJ. , et al. APOBEC3A is an oral cancer prognostic biomarker in Taiwanese carriers of an APOBEC deletion polymorphism. Nat Commun 2017; 8 (01) 465
  • 19 Huang KL, Li S, Mertins P, Cao S, Gunawardena HP, Ruggles KV. , et al. Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nat Commun 2017; 8: 14864
  • 20 Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P. , et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 2016; 534 (7605): 55-62
  • 21 Mundt F, Rajput S, Li S, Ruggles KV, Mooradian AD, Mertins P. , et al. Mass spectrometry-based proteomics reveals potential roles of NEK9 and MAP2K4 in resistance to PI3K inhibitors in triple negative breast cancers. Cancer Res 2018
  • 22 Zhang H, Liu T, Zhang Z, Payne SH, Zhang B, McDermott JE. , et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell 2016; 166 (03) 755-65
  • 23 Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills GB. , et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Can Ther 2006; 5 (10) 2512-21
  • 24 Desiere F, Deutsch EW, Nesvizhskii AI, Mallick P, King NL, Eng JK. , et al. Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry. Gen Biol 2005; 6 (01) R9
  • 25 Farrah T, Deutsch EW, Hoopmann MR, Hallows JL, Sun Z, Huang CY. , et al. The state of the human proteome in 2012 as viewed through PeptideAtlas. J Proteome Res 2013; 12 (01) 162-71
  • 26 Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM. , et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nuc Acids Res 2013; 41 (Database issue): D1063-9
  • 27 Farrah T, Deutsch EW, Kreisberg R, Sun Z, Campbell DS, Mendoza L. , et al. PASSEL: the PeptideAtlas SRMexperiment library. Proteomics 2012; 12 (08) 1170-5
  • 28 Lee JM, Hays JL, Annunziata CM, Noonan AM, Minasian L, Zujewski JA. , et al. Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J Natl Cancer Inst 2014; 106 (06) dju089
  • 29 Endris V, Stenzinger A, Pfarr N, Penzel R, Mobs M, Lenze D. , et al. NGS-based BRCA1/2 mutation testing of high-grade serous ovarian cancer tissue: results and conclusions of the first international round robin trial. Virch Archiv 2016; 468 (06) 697-705
  • 30 Matulonis UA, Penson RT, Domchek SM, Kaufman B, Shapira-Frommer R, Audeh MW. , et al. Olaparib monotherapy in patients with advanced relapsed ovarian cancer and a germline BRCA1/2 mutation: a multistudy analysis of response rates and safety. Ann Oncol 2016; 27 (06) 1013-9
  • 31 Domchek SM, Aghajanian C, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M. , et al. Efficacy and safety of olaparib monotherapy in germline BRCA1/2 mutation carriers with advanced ovarian cancer and three or more lines of prior therapy. Gyn Onc 2016; 140 (02) 199-203
  • 32 Zhang A, Sun H, Xu H, Qiu S, Wang X. Cell metabolomics. OMICS 2013; 17 (10) 495-501
  • 33 LaConti JJ, Laiakis EC, Mays AD, Peran I, Kim SE, Shay JW. , et al. Distinct serum metabolomics profiles associated with malignant progression in the KrasG12D mouse model of pancreatic ductal adenocarcinoma. BMC Genomics 2015; 16 Suppl 1: S1
  • 34 Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 2016; 17 (07) 451-9
  • 35 Hakimi AA, Reznik E, Lee CH, Creighton CJ, Brannon AR, Luna A. , et al. An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell 2016; 29 (01) 104-16
  • 36 Clish CB. Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring Harb Mol Case Stud 2015; 1 (01) a000588
  • 37 Mathe EA, Patterson AD, Haznadar M, Manna SK, Krausz KW, Bowman ED. , et al. Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res 2014; 74 (12) 3259-70
  • 38 Terunuma A, Putluri N, Mishra P, Mathe EA, Dorsey TH, Yi M. , et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest 2014; 124 (01) 398-412
  • 39 Armitage EG, Southam AD. Monitoring cancer prognosis, diagnosis and treatment efficacy using metabolomics and lipidomics. Metabolomics 2016; 12: 146
  • 40 Liesenfeld DB, Habermann N, Owen RW, Scalbert A, Ulrich CM. Review of mass spectrometry-based metabolomics in cancer research. Cancer Epidemiol Biomarkers Prev 2013; 22 (12) 2182-201
  • 41 Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N. , et al. HMDB: the Human Metabolome Database. Nucleic Acids Res 2007; 35 (Database issue): D521-6
  • 42 Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B. , et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 2009; 37 (Database issue): D603-10
  • 43 Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y. , et al. HMDB 3.0–The Human Metabolome Database in 2013. Nucleic Acids Res 2013; 41 (Database issue): D801-7
  • 44 Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 2016; 15 (07) 473-84
  • 45 Wishart DS. Advances in metabolite identification. Bioanalysis 2011; 3 (15) 1769-82
  • 46 Zhang A, Sun H, Wang P, Han Y, Wang X. Modern analytical techniques in metabolomics analysis. Analyst 2012; 137 (02) 293-300
  • 47 Dunn WB, Bailey NJ, Johnson HE. Measuring the metabolome: current analytical technologies. Analyst 2005; 130 (05) 606-25
  • 48 Emwas AH. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol Biol 2015; 1277: 161-93
  • 49 Roberts LD, Souza AL, Gerszten RE, Clish CB. Targeted metabolomics. Curr Protoc Mol Biol 2012; Chapter 30: Unit 30.2.1-24
  • 50 Vinayavekhin N, Saghatelian A. Untargeted metabolomics. Curr Protoc Mol Biol 2010; Chapter 30: Unit 30.1.1-24
  • 51 West JA, Beqqali A, Ament Z, Elliott P, Pinto YM, Arbustini E. , et al. A targeted metabolomics assay for cardiac metabolism and demonstration using a mouse model of dilated cardiomyopathy. Metabolomics 2016; 12: 59
  • 52 Gelman SJ, Patti GJ. Profiling cancer metabolism at the ‘omic’ level: a last resort or the next frontier?. Cancer Metab 2016; 4: 2
  • 53 Haznadar M, Mathe EA. Experimental and study design considerations for uncovering oncometabolites. Methods Mol Biol 2017; 1513: 37-47
  • 54 Dona AC, Kyriakides M, Scott F, Shephard EA, Varshavi D, Veselkov K. , et al. A guide to the identification of metabolites in NMR-based metabonomics/ metabolomics experiments. Comput Struct Biotechnol J 2016; 14: 135-53
  • 55 Watson DG. A rough guide to metabolite identification using high resolution liquid chromatography mass spectrometry in metabolomic profiling in metazoans. Comput Struct Biotechnol J 2013; 4: e201301005
  • 56 Kind T, Fiehn O. Advances in structure elucidation of small molecules using mass spectrometry. Bioanal Rev 2010; 2 (1-4): 23-60
  • 57 Grebe SK, Singh RJ. LC-MS/MS in the clinical laboratory - where to from here?. Clin Biochem Rev 2011; 32 (01) 5-31
  • 58 Li DW, Wang C, Bruschweiler R. Maximal clique method for the automated analysis of NMR TOCSY spectra of complex mixtures. J Biomol NMR 2017; 68 (03) 195-202
  • 59 Bingol K, Bruschweiler R. Two elephants in the room: new hybrid nuclear magnetic resonance and mass spectrometry approaches for metabolomics. Curr Opin Clin Nutr Metab Care 2015; 18 (05) 471-7
  • 60 Sud M, Fahy E, Cotter D, Azam K, Vadivelu I, Burant C. , et al. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res 2016; 44 (D1): D463-70
  • 61 Salek RM, Haug K, Conesa P, Hastings J, Williams M, Mahendraker T. , et al. The MetaboLights repository: curation challenges in metabolomics. Database (Oxford) 2013; 2013: bat029
  • 62 Menni C, Zierer J, Valdes AM, Spector TD. Mixing omics: combining genetics and metabolomics to study rheumatic diseases. Nat Rev Rheumatol 2017; 13 (03) 174-81
  • 63 Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet 2015; 16 (02) 85-97
  • 64 Johnson CH, Spilker ME, Goetz L, Peterson SN, Siuzdak G. Metabolite and microbiome interplay in cancer immunotherapy. Cancer Res 2016; 76 (21) 6146-52
  • 65 Alonso A, Marsal S, Julia A. Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol 2015; 3: 23
  • 66 Kelder T, Conklin BR, Evelo CT, Pico AR. Finding the right questions: exploratory pathway analysis to enhance biological discovery in large datasets. PLoS Biol 2010; 8 (08) e1000472
  • 67 Booth SC, Weljie AM, Turner RJ. Computational tools for the secondary analysis of metabolomics experiments. Comput Struct Biotechnol J 2013; 4: e201301003
  • 68 Zhang B, Hu S, Baskin E, Patt A, Siddiqui JK, Mathe EA. RaMP: A comprehensive relational database of metabolomics pathways for pathway enrichment analysis of genes and metabolites. Metabolites 2018;8(1)
  • 69 Siddiqui JK, Baskin E, Liu M, Cantemir-Stone CZ, Zhang B, Bonneville R. , et al. IntLIM: integration using linear models of metabolomics and gene expression data. BMC Bioinformatics 2018; 19 (01) 81
  • 70 Gowda H, Ivanisevic J, Johnson CH, Kurczy ME, Benton HP, Rinehart D. , et al. Interactive XCMS Online: simplifying advanced metabolomic data processing and subsequent statistical analyses. Anal Chem 2014; 86 (14) 6931-9
  • 71 Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. XCMS Online: a web-based platform to process untargeted metabolomic data. Anal Chem 2012; 84 (11) 5035-9
  • 72 Xia J, Wishart DS. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinformatics 2016; 55: 14.10.1-14.10.91
  • 73 Xia J, Sinelnikov IV, Han B, Wishart DS. Metabo- Analyst 3.0–making metabolomics more meaningful. Nucleic Acids Res 2015; 43 (W1): W251-7
  • 74 Wanichthanarak K, Fan S, Grapov D, Barupal DK, Fiehn O. Metabox: A toolbox for metabolomic data analysis, interpretation and integrative exploration. PLoS One 2017; 12 (01) e0171046
  • 75 Vaniya A, Fiehn O. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. Trends Analyt Chem 2015; 69: 52-61
  • 76 Wohlgemuth G, Haldiya PK, Willighagen E, Kind T, Fiehn O. The Chemical Translation Service--a web-based tool to improve standardization of metabolomic reports. Bioinformatics 2010; 26 (20) 2647-8
  • 77 Rocca-Serra P, Salek RM, Arita M, Correa E, Dayalan S, Gonzalez-Beltran A. , et al. Data standards can boost metabolomics research, and if there is a will, there is a way. Metabolomics 2016; 12: 14
  • 78 Spicer R, Salek RM, Moreno P, Canueto D, Steinbeck C. Navigating freely-available software tools for metabolomics analysis. Metabolomics 2017; 13 (09) 106
  • 79 Zhang A, Sun H, Yan G, Wang P, Wang X. Metabolomics for biomarker discovery: moving to the clinic. Biomed Res Int 2015; 2015: 354671
  • 80 Haznadar M, Cai Q, Krausz KW, Bowman ED, Margono E, Noro R. , et al. Urinary metabolite risk biomarkers of lung cancer: a prospective cohort study. Cancer Epidemiol Biomarkers Prev 2016; 25 (06) 978-86
  • 81 Patel S, Ahmed S. Emerging field of metabolomics: big promise for cancer biomarker identification and drug discovery. J Pharm Biomed Anal 2015; 107: 63-74
  • 82 Beger RD, Dunn W, Schmidt MA, Gross SS, Kirwan JA, Cascante M. , et al. Metabolomics enables precision medicine: “A White Paper, Community Perspective”. Metabolomics 2016; 12 (10) 149
  • 83 Shaffer M, Armstrong AJS, Phelan VV, Reisdorph N, Lozupone CA. Microbiome and metabolome data integration provides insight into health and disease. Transl Res 2017; 189: 51-64
  • 84 Garg N, Luzzatto-Knaan T, Melnik AV, Caraballo-Rodriguez AM, Floros DJ, Petras D. , et al. Natural products as mediators of disease. Nat Prod Rep 2017; 34 (02) 194-219
  • 85 Devaraj S, Hemarajata P, Versalovic J. The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem 2013; 59 (04) 617-28
  • 86 Boulange CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 2016; 8 (01) 42
  • 87 Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016; 535 (7610): 56-64
  • 88 Feng Q, Liu Z, Zhong S, Li R, Xia H, Jie Z. , et al. Integrated metabolomics and metagenomics analysis of plasma and urine identified microbial metabolites associated with coronary heart disease. Sci Rep 2016; 6: 22525
  • 89 Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B. , et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472 (7341): 57-63
  • 90 Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X. , et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013; 368 (17) 1575-84
  • 91 Tong M, McHardy I, Ruegger P, Goudarzi M, Kashyap PC, Haritunians T. , et al. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn's disease risk polymorphism. ISME J 2014; 8 (11) 2193-206
  • 92 Contreras AV, Cocom-Chan B, Hernandez-Montes G, Portillo-Bobadilla T, Resendis-Antonio O. Host-microbiome interaction and cancer: potential application in precision medicine. Front Physiol 2016; 7: 606
  • 93 Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X. , et al. Fecal microbiota, fecal metabolome, and colorectal cancer interrelations. PLoS One 2016; 11 (03) e0152126
  • 94 Buescher JM, Driggers EM. Integration of omics: more than the sum of its parts. Cancer Metab 2016; 4: 4
  • 95 Lempradl A, Pospisilik JA, Penninger JM. Exploring the emerging complexity in transcriptional regulation of energy homeostasis. Nat Rev Genet 2015; 16 (11) 665-81
  • 96 Etchegaray JP, Mostoslavsky R. Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes. Mol Cell 2016; 62 (05) 695-711
  • 97 Alix-Panabieres C, Pantel K. Challenges in circulating tumour cell research. Nat Rev Cancer 2014; 14 (09) 623-31
  • 98 Mohan S, Chemi F, Brady G. Challenges and unanswered questions for the next decade of circulating tumour cell research in lung cancer. Transl Lung Cancer Res 2017; 6 (04) 454-72
  • 99 Polzer B, Medoro G, Pasch S, Fontana F, Zorzino L, Pestka A. , et al. Molecular profiling of single circulating tumor cells with diagnostic intention. EMBO Mol Med 2014; 6 (11) 1371-86
  • 100 Sparano JA, O'Neill A, Alpaugh K, Wolff AC, Northfelt DW, Dang C. et al. Abstract GS6-03: Circulating tumor cells five years after diagnosis are prognostic for late recurrence in operable stage II-III breast cancer. Presented at: San Antonio Breast Cancer Symposium. 2017 Dec 3-9; San Antonio, TX. (abstract)
  • 101 Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 2010; 101 (10) 2087-92
  • 102 Garcia-Romero N, Esteban-Rubio S, Rackov G, Carrion-Navarro J, Belda-Iniesta C, Ayuso-Sacido A. Extracellular vesicles compartment in liquid biopsies: Clinical application. Mol Aspects Med 2018; 60: 27-37
  • 103 Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J. , et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015; 523 (7559): 177-82
  • 104 Kalluri R. The biology and function of exosomes in cancer. J Clin Invest 2016; 126 (04) 1208-15
  • 105 Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L. , et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018; 359 (6378): 926-30
  • 106 Mandel P, Metais P. Les acides nucléiques du plasma sanguin chez l'homme. C R Seances Soc Biol Fil 1948; 142 (3-4): 241-3
  • 107 Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977; 37 (03) 646-50
  • 108 Stroun M, Anker P, Lyautey J, Lederrey C, Maurice PA. Isolation and characterization of DNA from the plasma of cancer patients. Eur J Cancer Clin Oncol 1987; 23 (06) 707-12
  • 109 Stroun M, Anker P, Maurice P, Lyautey J, Lederrey C, Beljanski M. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 1989; 46 (05) 318-22
  • 110 Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, Stroun M. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol 1994; 86 (04) 774-9
  • 111 Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF. , et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 2013; 368 (13) 1199-209
  • 112 Bianchi DW, Parker RL, Wentworth J, Madankumar R, Saffer C, Das AF. , et al. DNA sequencing versus standard prenatal aneuploidy screening. N Engl J Med 2014; 370 (09) 799-808
  • 113 Garraway LA, Lander ES. Lessons from the cancer genome. Cell 2013; 153 (01) 17-37
  • 114 MacConaill LE. Existing and emerging technologies for tumor genomic profiling. J Clin Oncol 2013; 31 (15) 1815-24
  • 115 Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 2010; 11 (10) 685-96
  • 116 Silva JM, Silva J, Sanchez A, Garcia JM, Dominguez G, Provencio M. , et al. Tumor DNA in plasma at diagnosis of breast cancer patients is a valuable predictor of disease-free survival. Clin Cancer Res 2002; 8 (12) 3761-6
  • 117 Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M. , et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008; 14 (09) 985-90
  • 118 Higgins MJ, Jelovac D, Barnathan E, Blair B, Slater S, Powers P. , et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin Cancer Res 2012; 18 (12) 3462-9
  • 119 Garcia-Murillas I, Schiavon G, Weigelt B, Ng C, Hrebien S, Cutts RJ. , et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med 2015; 7 (302): 302ra133
  • 120 Schiavon G, Hrebien S, Garcia-Murillas I, Cutts RJ, Pearson A, Tarazona N. , et al. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci Transl Med 2015; 7 (313): 313ra182
  • 121 Fribbens C, O'Leary B, Kilburn L, Hrebien S, Garcia-Murillas I, Beaney M. , et al. Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer. J Clin Oncol 2016; 34 (25) 2961-8
  • 122 Paweletz CP, Sacher AG, Raymond CK, Alden RS, O'Connell A, Mach SL. , et al. Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients. Clin Cancer Res 2016; 22 (04) 915-22
  • 123 Rothe F, Laes JF, Lambrechts D, Smeets D, Vincent D, Maetens M. , et al. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer. Ann Oncol 2014; 25 (10) 1959-65
  • 124 Chae YK, Davis AA, Jain S, Santa-Maria C, Flaum L, Beaubier N. , et al. Concordance of genomic alterations by next-generation sequencing (NGS) in tumor tissue versus circulating tumor DNA in breast cancer. Mol Cancer Ther 2017; 16 (07) 1412-20
  • 125 Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F. , et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 2012; 4 (136): 136ra68
  • 126 Banks KC, Mortimer SAW, Zill OA, Lanman RB, Eltoukhy H, Talasaz A. Abstract B140: Genomic profiling of over 5,000 consecutive cancer patients with a CLIA-certified cell-free DNA NGS test: Analytic and clinical validity and utility. Mol Cancer Ther 2015; 14 (12 Supplement 2): B140-B
  • 127 Pearson A, Smyth E, Babina IS, Herrera-Abreu MT, Tarazona N, Peckitt C. , et al. High-level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial. Cancer Discov 2016; 6 (08) 838-51
  • 128 Yates LR, Knappskog S, Wedge D, Farmery JHR, Gonzalez S, Martincorena I. , et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 2017; 32 (02) 169-84 e7
  • 129 Siravegna G, Mussolin B, Buscarino M, Corti G, Cassingena A, Crisafulli G. , et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med 2015; 21 (07) 795-801
  • 130 Amir E, Miller N, Geddie W, Freedman O, Kassam F, Simmons C. , et al. Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J Clin Oncol 2012; 30 (06) 587-92
  • 131 cobas EGFR Mutation Test v2 2016. Available from: https://www.fda.gov/Drugs/Information-OnDrugs/ApprovedDrugs/ucm504540.htm . Accessed April 12, 2018
  • 132 Sacher AG, Paweletz C, Dahlberg SE, Alden RS, O'Connell A, Feeney N. , et al. Prospective calidation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol 2016; 2 (08) 1014-22
  • 133 Thress KS, Paweletz CP, Felip E, Cho BC, Stetson D, Dougherty B. , et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med 2015; 21 (06) 560-2
  • 134 Azad AA, Volik SV, Wyatt AW, Haegert A, LeBihan S, Bell RH. , et al. Androgen receptor gene aberrations in circulating cell-free DNA: Biomarkers of therapeutic resistance in castration- resistant prostate cancer. Clin Cancer Res 2015; 21 (10) 2315-24
  • 135 Zill OA, Greene C, Sebisanovic D, Siew LM, Leng J, Vu M. , et al. Cell-free DNA next-generation sequencing in pancreatobiliary carcinomas. Cancer Discov 2015; 5 (10) 1040-8
  • 136 Pereira AAL, Morelli MP, Overman M, Kee B, Fogelman D, Vilar E. , et al. Clinical utility of circulating cell-free DNA in advanced colorectal cancer. PLoS One 2017; 12 (08) e0183949
  • 137 Tie J, Wang Y, Tomasetti C, Li L, Springer S, Kinde I. , et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 2016; 8 (346): 346ra92
  • 138 Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA. , et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 2014; 20 (05) 548-54
  • 139 Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J. , et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med 2017; 9 (403): eaan2415
  • 140 Adalsteinsson VA, Ha G, Freeman SS, Choudhury AD, Stover DG, Parsons HA. , et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat Commun 2017; 8 (01) 1324
  • 141 Murtaza M, Dawson SJ, Pogrebniak K, Rueda OM, Provenzano E, Grant J. , et al. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer. Nat Commun 2015; 6: 8760
  • 142 Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM. , et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 2013; 497 (7447): 108-12
  • 143 Kuderer NM, Burton KA, Blau S, Rose AL, Parker S, Lyman GH. , et al. Comparison of 2 commercially available next-generation sequencing platforms in oncology. JAMA Oncol 2017; 3 (07) 996-8
  • 144 Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF. , et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014; 371 (26) 2477-87
  • 145 Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG. , et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014; 371 (26) 2488-98
  • 146 Heidary M, Auer M, Ulz P, Heitzer E, Petru E, Gasch C. , et al. The dynamic range of circulating tumor DNA in metastatic breast cancer. Breast Cancer Res 2014; 16 (04) 421
  • 147 Ulz P, Auer M, Heitzer E. Detection of circulating tumor DNA in the blood of cancer patients: An important tool in cancer chemoprevention. Methods Mol Biol 2016; 1379: 45-68
  • 148 Van Roy N, Van der Linden M, Menten B, Dheedene A, Vandeputte C, Van Dorpe J. , et al. Shallow whole genome sequencing on circulating cell-free DNA allows reliable non-invasive copy number profiling in neuroblastoma patients. Clin Cancer Res 2017; 23 (20) 6305-14
  • 149 Stover DG, Parsons HA, Ha G, Freeman S, Barry WT, Guo H. , et al. Genomewide copy number analysis of chemotherapy resistant metastatic triple-negative breast cancer from cell-free DNA. J Clin Oncol 2018; 36 (06) 543-53
  • 150 Ladas I, Fitarelli-Kiehl M, Song C, Adalsteinsson VA, Parsons HA, Lin NU. , et al. Multiplexed elimination of wild-type DNA and high-resolution melting prior to targeted resequencing of liquid biopsies. Clin Chem 2017; 63 (10) 1605-13
  • 151 Sonnenberg A, Marciniak JY, Rassenti L, Ghia EM, Skowronski EA, Manouchehri S. , et al. Rapid electrokinetic isolation of cancer-related circulating cell-free DNA directly from blood. Clin Chem 2014; 60 (03) 500-9
  • 152 Merker JD, Oxnard GR, Compton C, Diehn M, Hurley P, Lazar AJ. , et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. J Clin Oncol 2018;Mar 5 [epub ahead of print]
  • 153 Lussier YA, Chen JL. The emergence of genome- based drug repositioning. Sci Transl Med 2011; 3 (96) 96ps35
  • 154 Johnson TLD, Chen JL. Opportunities for patient matching algorithms to improve patient care in oncology. JCO Clinical Cancer Informatics 2017;1(1)
  • 155 Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S. , et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 2014; 158 (04) 929-44
  • 156 Dudley JT, Chen R, Butte AJ. Matching cancer genomes to established cell lines for personalized oncology. Pac Symp Biocomput 2011; 243-52
  • 157 Robinson PN, Kohler S, Oellrich A, Sanger Mouse Genetics P, Wang K, Mungall CJ. , et al. Improved exome prioritization of disease genes through cross-species phenotype comparison. Genome Res 2014; 24 (02) 340-8
  • 158 Wicks P, Vaughan TE, Massagli MP, Heywood J. Accelerated clinical discovery using self-reported patient data collected online and a patient-matching algorithm. Nat Biotechnol 2011; 29 (05) 411-4
  • 159 http://investors.foundationmedicine.com/news-releases/news-release-details/foundation-medicine-launches-ice-2-its-new-version-interactive (accessed May 8, 2018)
  • 160 Satagopan JM, Sen A, Zhou Q, Lan Q, Rothman N, Langseth H. , et al. Bayes and empirical Bayes methods for reduced rank regression models in matched case-control studies. Biometrics 2016; 72 (02) 584-95
  • 161 Bragin E, Chatzimichali EA, Wright CF, Hurles ME, Firth HV, Bevan AP. , et al. DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation. Nucleic Acids Res 2014; 42 (Database issue): D993-D1000
  • 162 Ma C, Ouyang J, Chen HL, Zhao XH. An efficient diagnosis system for Parkinson's disease using kernel-based extreme learning machine with subtractive clustering features weighting approach. Comput Math Methods Med 2014; 2014: 985789
  • 163 Chen Y, Cao W, Gao X, Ong H, Ji T. Predicting postoperative complications of head and neck squamous cell carcinoma in elderly patients using random forest algorithm model. BMC Med Inform Decis Mak 2015; 15: 44
  • 164 Belciug S, Gorunescu F. Error-correction learning for artificial neural networks using the Bayesian paradigm. Application to automated medical diagnosis. J Biomed Inform 2014; 52: 329-37
  • 165 Lamb J. The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer 2007; 7 (01) 54-60
  • 166 Mate S, Kopcke F, Toddenroth D, Martin M, Prokosch HU, Burkle T. , et al. Ontology-based data integration between clinical and research systems. PLoS One 2015; 10 (01) e0116656
  • 167 Embi PJ, Jain A, Clark J, Bizjack S, Hornung R, Harris CM. Effect of a clinical trial alert system on physician participation in trial recruitment. Arch Intern Med 2005; 165 (19) 2272-7
  • 168 Ni Y, Wright J, Perentesis J, Lingren T, Deleger L, Kaiser M. , et al. Increasing the efficiency of trial-patient matching: automated clinical trial eligibility pre-screening for pediatric oncology patients. BMC Med Inform Decis Mak 2015; 15: 28
  • 169 Gottlieb MM, Arenillas DJ, Maithripala S, Maurer ZD, Tarailo Graovac M, Armstrong L. , et al. GeneYenta: a phenotype-based rare disease case matching tool based on online dating algorithms for the acceleration of exome interpretation. Hum Mutat 2015; 36 (04) 432-8
  • 170 Hansen NF. Variant calling from next generation sequence data. Methods Mol Biol 2016; 1418: 209-24
  • 171 Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M. , et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 2014; 11 (03) 333-7
  • 172 Jensen MA, Ferretti V, Grossman RL, Staudt LM. The NCI Genomic Data Commons as an engine for precision medicine. Blood 2017; 130 (04) 453-9
  • 173 Cook-Deegan R, Ankeny RA, Maxson Jones K. Sharing data to build a medical information commons: from Bermuda to the Global Alliance. Annu Rev Genomics Hum Genet 2017; 18: 389-415
  • 174 Alterovitz G, Warner J, Zhang P, Chen Y, Ullman-Cullere M, Kreda D. , et al. SMART on FHIR Genomics: facilitating standardized clinico-genomic apps. J Am Med Inform Assoc 2015; 22 (06) 1173-8
  • 175 Miller RS. CancerLinQ Update. J Oncol Pract 2016; 12 (10) 835-7
  • 176 Consortium APG. AACR Project GENIE: Powering precision medicine through an international consortium. Cancer Discov 2017; 7 (08) 818-31
  • 177 Joly Y, Dove ES, Knoppers BM, Bobrow M, Chalmers D. Data sharing in the post-genomic world: the experience of the International Cancer Genome Consortium (ICGC) Data Access Compliance Office (DACO). PLoS Comput Biol 2012; 8 (07) e1002549
  • 178 Turvey C, Klein D, Fix G, Hogan TP, Woods S, Simon SR. , et al. Blue Button use by patients to access and share health record information using the Department of Veterans Affairs' online patient portal. J Am Med Inform Assoc 2014; 21 (04) 657-63
  • 179 https://www.syapse.com/news/press-releases/oncology-precision-network-open-announces-data-sharing-commitments-at-vice-president-bidens-cancer-moonshot-summit (accessed May 8, 2018)