Semin Musculoskelet Radiol 2018; 22(04): 377-385
DOI: 10.1055/s-0038-1667301
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Imaging of the Knee Following Repair of Focal Articular Cartilage Lesions

Felix Wuennemann
1   Department of Diagnostic and Interventional Radiology, University Hospital of the University of Heidelberg, Heidelberg, Germany
,
Christoph Rehnitz
1   Department of Diagnostic and Interventional Radiology, University Hospital of the University of Heidelberg, Heidelberg, Germany
,
Marc-André Weber
2   Institute of Diagnostic and Interventional Radiology, University Medical Center Rostock, Rostock, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
22 August 2018 (online)

Abstract

Focal chondral or osteochondral lesions of the knee are common lesions involving either the cartilage layers or the cartilage layers and the subchondral bone. Despite their heterogeneous clinical presentation, they are important risk factors for the premature development of osteoarthritis. Therefore, early detection of osteochondral lesions and focal cartilage defects is crucial. In symptomatic (osteo-)chondral lesions, numerous therapeutic strategies, ranging from conservative treatment to surgical procedures such as marrow stimulation, osteochondral autograft transplantation, or autologous chondrocyte implantation are available. Musculoskeletal radiologists should be familiar with these surgical procedures, the evaluation of the postoperative findings as well as the possible complications when interpreting postoperative imaging studies. This review article describes the different surgical approaches to focal osteochondral lesions of the knee with emphasis on postoperative imaging findings and the pitfalls possibly encountered by the radiologist.

 
  • References

  • 1 Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 2002; 18 (07) 730-734
  • 2 Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 2007; 14 (03) 177-182
  • 3 Arøen A, Løken S, Heir S. , et al. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 2004; 32 (01) 211-215
  • 4 Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 1997; 13 (04) 456-460
  • 5 Pascual-Garrido C, Moran CJ, Green DW, Cole BJ. Osteochondritis dissecans of the knee in children and adolescents. Curr Opin Pediatr 2013; 25 (01) 46-51
  • 6 Rath B, Eschweiler J, Betsch M, Gruber G. Cartilage repair of the knee joint [in German]. Orthopade 2017; 46 (11) 919-927
  • 7 Alparslan L, Winalski CS, Boutin RD, Minas T. Postoperative magnetic resonance imaging of articular cartilage repair. Semin Musculoskelet Radiol 2001; 5 (04) 345-363
  • 8 Rehnitz C, Kupfer J, Streich NA. , et al. Comparison of biochemical cartilage imaging techniques at 3 T MRI. Osteoarthritis Cartilage 2014; 22 (10) 1732-1742
  • 9 Falah M, Nierenberg G, Soudry M, Hayden M, Volpin G. Treatment of articular cartilage lesions of the knee. Int Orthop 2010; 34 (05) 621-630
  • 10 Salzmann GM, Niemeyer P, Hochrein A, Stoddart MJ, Angele P. Articular cartilage repair of the knee in children and adolescents. Orthop J Sports Med 2018; 6 (03) 2325967118760190
  • 11 Gersing AS, Schwaiger BJ, Wörtler K, Jungmann PM. Advanced cartilage imaging for detection of cartilage injuries and osteochondral lesions [in German]. Radiologe 2018; 58 (05) 422-432
  • 12 Weber M-A, Wünnemann F, Jungmann PM, Kuni B, Rehnitz C. Modern cartilage imaging of the ankle. RoFo Fortschr Geb Rontgenstr Nuklearmed 2017; 189 (10) 945-956
  • 13 Ronga M, Angeretti G, Ferraro S, DE Falco G, Genovese EA, Cherubino P. Imaging of articular cartilage: current concepts. Joints 2014; 2 (03) 137-140
  • 14 Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 2013; 267 (02) 503-513
  • 15 van Tiel J, Siebelt M, Waarsing JH. , et al. CT arthrography of the human knee to measure cartilage quality with low radiation dose. Osteoarthritis Cartilage 2012; 20 (07) 678-685
  • 16 Binks DA, Hodgson RJ, Ries ME. , et al. Quantitative parametric MRI of articular cartilage: a review of progress and open challenges. Br J Radiol 2013; 86 (1023): 20120163
  • 17 Rehnitz C, Klaan B, Burkholder I, von Stillfried F, Kauczor HU, Weber MA. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping at 3T MRI of the wrist: feasibility and clinical application. J Magn Reson Imaging 2017; 45 (02) 381-389
  • 18 Guermazi A, Roemer FW, Alizai H. , et al. State of the art: MR imaging after knee cartilage repair surgery. Radiology 2015; 277 (01) 23-43
  • 19 Rehnitz C, Kuni B, Wuennemann F. , et al. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping of talar osteochondral lesions: indicators of clinical outcomes. J Magn Reson Imaging 2017; 46 (06) 1601-1610
  • 20 Domayer SE, Kutscha-Lissberg F, Welsch G. , et al. T2 mapping in the knee after microfracture at 3.0 T: correlation of global T2 values and clinical outcome—preliminary results. Osteoarthritis Cartilage 2008; 16 (08) 903-908
  • 21 Niethammer TR, Safi E, Ficklscherer A. , et al. Graft maturation of autologous chondrocyte implantation: magnetic resonance investigation with T2 mapping. Am J Sports Med 2014; 42 (09) 2199-2204
  • 22 Krusche-Mandl I, Schmitt B, Zak L. , et al. Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation. Osteoarthritis Cartilage 2012; 20 (05) 357-363
  • 23 Zbýň Š, Mlynárik V, Juras V, Szomolanyi P, Trattnig S. Evaluation of cartilage repair and osteoarthritis with sodium MRI. NMR Biomed 2015; 29 (02) 206-215
  • 24 Schleich C, Bittersohl B, Miese F. , et al. Glycosaminoglycan chemical exchange saturation transfer at 3T MRI in asymptomatic knee joints. Acta Radiol 2016; 57 (05) 627-632
  • 25 Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br 1961; 43-B: 752-757
  • 26 Ficat RP, Philippe J, Hungerford DS. Chondromalacia patellae: a system of classification. Clin Orthop Relat Res 1979; (144) 55-62
  • 27 Noyes FR, Stabler CL. A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 1989; 17 (04) 505-513
  • 28 Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 2003; 85-A (Suppl. 02) 58-69
  • 29 Staats K, Sabeti-Aschraf M, Apprich S. , et al. Preoperative MRI is helpful but not sufficient to detect associated lesions in patients with chronic ankle instability. Knee Surg Sports Traumatol Arthrosc 2017; 12: 346-347
  • 30 Ferrero G, Sconfienza LM, Fiz F. , et al. Effect of intra-articular injection of intermediate-weight hyaluronic acid on hip and knee cartilage: in-vivo evaluation using T2 mapping. Eur Radiol 2018; 28 (06) 2345-2355
  • 31 Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De Smet AA. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology 2009; 250 (03) 839-848
  • 32 Jungmann PM, Welsch GH, Brittberg M. , et al. Magnetic Resonance Imaging Score and Classification System (AMADEUS) for assessment of preoperative cartilage defect severity. Cartilage 2017; 8 (03) 272-282
  • 33 Marlovits S, Striessnig G, Resinger CT. , et al. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 2004; 52 (03) 310-319
  • 34 Welsch GH, Zak L, Mamisch TC, Resinger C, Marlovits S, Trattnig S. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla. Invest Radiol 2009; 44 (09) 603-612
  • 35 Welsch GH, Zak L, Mamisch TC. , et al. Advanced morphological 3D magnetic resonance observation of cartilage repair tissue (MOCART) scoring using a new isotropic 3D proton-density, turbo spin echo sequence with variable flip angle distribution (PD-SPACE) compared to an isotropic 3D steady-state free precession sequence (True-FISP) and standard 2D sequences. J Magn Reson Imaging 2011; 33 (01) 180-188
  • 36 Takazawa K, Adachi N, Deie M. , et al. Evaluation of magnetic resonance imaging and clinical outcome after tissue-engineered cartilage implantation: prospective 6-year follow-up study. J Orthop Sci 2012; 17 (04) 413-424
  • 37 Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 2006; 57 (01) 16-23
  • 38 Roemer FW, Guermazi A, Trattnig S. , et al. Whole joint MRI assessment of surgical cartilage repair of the knee: cartilage repair osteoarthritis knee score (CROAKS). Osteoarthritis Cartilage 2014; 22 (06) 779-799
  • 39 Camp CL, Stuart MJ, Krych AJ. Current concepts of articular cartilage restoration techniques in the knee. Sports Health 2014; 6 (03) 265-273
  • 40 Aae TF, Randsborg P-H, Lurås H, Årøen A, Lian ØB. Microfracture is more cost-effective than autologous chondrocyte implantation: a review of level 1 and level 2 studies with 5 year follow-up. Knee Surg Sports Traumatol Arthrosc 2018; 26 (04) 1044-1052
  • 41 Kraeutler MJ, Belk JW, Purcell JM, McCarty EC. Microfracture versus autologous chondrocyte implantation for articular cartilage lesions in the knee: a systematic review of 5-year outcomes. Am J Sports Med 2018; 46 (04) 995-999
  • 42 Salzmann GM, Niemeyer P, Steinwachs M, Kreuz PC, Südkamp NP, Mayr HO. Cartilage repair approach and treatment characteristics across the knee joint: a European survey. Arch Orthop Trauma Surg 2011; 131 (03) 283-291
  • 43 Cole BJ, Pascual-Garrido C, Grumet RC. Surgical management of articular cartilage defects in the knee. J Bone Joint Surg Am 2009; 91 (07) 1778-1790
  • 44 Choi YS, Potter HG, Chun TJ. MR imaging of cartilage repair in the knee and ankle. Radiographics 2008; 28 (04) 1043-1059
  • 45 Von Keudell A, Atzwanger J, Forstner R, Resch H, Hoffelner T, Mayer M. Radiological evaluation of cartilage after microfracture treatment: a long-term follow-up study. Eur J Radiol 2012; 81 (07) 1618-1624
  • 46 Nehrer S, Spector M, Minas T. Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop Relat Res 1999; (365) 149-162
  • 47 Chang G, Sherman O, Madelin G, Recht M, Regatte R. MR imaging assessment of articular cartilage repair procedures. Magn Reson Imaging Clin N Am 2011; 19 (02) 323-337
  • 48 Kreuz PC, Erggelet C, Steinwachs MR. , et al. Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger?. Arthroscopy 2006; 22 (11) 1180-1186
  • 49 Roemer FW, Frobell R, Hunter DJ. , et al. MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthritis Cartilage 2009; 17 (09) 1115-1131
  • 50 Yamashita F, Sakakida K, Suzu F, Takai S. The transplantation of an autogeneic osteochondral fragment for osteochondritis dissecans of the knee. Clin Orthop Relat Res 1985; (201) 43-50
  • 51 Hangody L, Kish G, Kárpáti Z, Szerb I, Udvarhelyi I. Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report. Knee Surg Sports Traumatol Arthrosc 1997; 5 (04) 262-267
  • 52 McCoy B, Miniaci A. Osteochondral autograft transplantation/mosaicplasty. J Knee Surg 2012; 25 (02) 99-108
  • 53 Robert H. Chondral repair of the knee joint using mosaicplasty. Orthop Traumatol Surg Res 2011; 97 (04) 418-429
  • 54 Ahmad CS, Cohen ZA, Levine WN, Ateshian GA, Mow VC. Biomechanical and topographic considerations for autologous osteochondral grafting in the knee. Am J Sports Med 2001; 29 (02) 201-206
  • 55 Link TM, Mischung J, Wörtler K, Burkart A, Rummeny EJ, Imhoff AB. Normal and pathological MR findings in osteochondral autografts with longitudinal follow-up. Eur Radiol 2006; 16 (01) 88-96
  • 56 Glenn Jr RE, McCarty EC, Potter HG, Juliao SF, Gordon JD, Spindler KP. Comparison of fresh osteochondral autografts and allografts: a canine model. Am J Sports Med 2006; 34 (07) 1084-1093
  • 57 Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331 (14) 889-895
  • 58 Brittberg M. Autologous chondrocyte implantation—technique and long-term follow-up. Injury 2008; 39 (01) (Suppl. 01) S40-S49
  • 59 Brown WE, Potter HG, Marx RG, Wickiewicz TL, Warren RF. Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Relat Res 2004; (422) 214-223
  • 60 Wada Y, Watanabe A, Yamashita T, Isobe T, Moriya H. Evaluation of articular cartilage with 3D-SPGR MRI after autologous chondrocyte implantation. J Orthop Sci 2003; 8 (04) 514-517
  • 61 Benthien JP, Behrens P. The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg Sports Traumatol Arthrosc 2011; 19 (08) 1316-1319
  • 62 Gao L, Orth P, Cucchiarini M, Madry H. Autologous matrix-induced chondrogenesis: a systematic review of the clinical evidence. Am J Sports Med 2017; 2012 (02) 363546517740575
  • 63 Schenker H, Wild M, Rath B. , et al. Current overview of cartilage regeneration procedures [in German]. Orthopade 2017; 46 (11) 907-913
  • 64 Volz M, Schaumburger J, Frick H, Grifka J, Anders S. A randomized controlled trial demonstrating sustained benefit of autologous matrix-induced chondrogenesis over microfracture at five years. Int Orthop 2017; 41 (04) 797-804
  • 65 Walther M, Szeimies U, Gottschalk O. MR imaging after cartilage reconstruction with autologous matrix induced chondrogenesis (AMIC). Foot Ankle Surg 2017; 23 (Suppl. 01) 44