Subscribe to RSS
DOI: 10.1055/s-0038-1668789
Human skin-derived ABCB5+ mesenchymal stem cell injection improves liver disease parameters in Mdr2ko mice
Publication History
Publication Date:
13 August 2018 (online)
Introduction:
ABCB5+ cells are mesenchymal stem cells isolated from human skin (sMSC). A therapeutic potential was shown in chronic venous ulcers.
Aim:
Because of organ-donor limitations, we suggest that sMSC provide a promising therapy option for patients with chronic/end stage liver disease, where is no other option for survival than liver transplantation.
Methods:
16 weeks old Mdr2ko mice, exerting inflammation-related fibrosis, were tail vein injected with 5 × 105 ABCB5+ cells. After 2 days, 6 days, 2 and 4 weeks liver damage parameters were evaluated on mRNA and protein levels.
To get insight on cellular effects, cultured human hepatic stellate cells, LX-2, were treated with supernatant of sMSC with or without previous macrophage stimulation, and activation parameters were investigated.
Results:
Application of sMSC to Mdr2ko mice did not implicate body and liver weight changes nor increase liver plasma parameters (ALT, AST, AP), indicating lack of toxicity. A significant reduction of fibrosis was seen in ABCB5+ treated Mdr2ko mice by quantifying Picro Sirius Red positive staining. This is, however, not reflected at the mRNA level, where typical fibrosis markers like Timp1, aSMA, TGF-b, Col1A1 or CTGF are not significantly changed. We further observe a significant increase of infiltrating Kupffer cell numbers in stem cell treated mice, as evidenced by F4/80 and CD163 staining, without significant changes at mRNA levels for TNFa and IL-6, whereas IL-1b and anti-inflammatory IL-10 are increased. Finally, sMSC injected mice display increased proliferative activity in hepatocytes and non-parenchymal cells, as evident from Ki67 staining. In vitro, sMSC supernatant increases aSMA expression and TGF-b signalling of LX-2 cells, whereby Vimentin expression is significantly decreased.
Conclusions:
Mdr2ko mice tolerated sMSC application very well and a significant reduction of collagen deposition is a promising preliminary result. An increasing number of proliferating cells further indicate improved regenerative activity. One important factor secreted from sMSC is obviously TGF-b.