CC BY 4.0 · Surg J (N Y) 2018; 04(03): e160-e163
DOI: 10.1055/s-0038-1669929
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Effect of Medial Tibial Slope on Anterior Tibial Translation and Short-Term ACL Reconstruction Outcome

Steffen Sauer
1   Department of Sports Traumatology, Aarhus University Hospital, Aarhus, Denmark
,
Mark Clatworthy
2   Department of Orthopaedic Surgery, Middlemore Hospital, Auckland, New Zealand
› Author Affiliations
Further Information

Publication History

22 August 2017

31 July 2018

Publication Date:
10 September 2018 (online)

Abstract

Background Increased tibial slope has been shown to be associated with higher anterior cruciate ligament (ACL) reconstruction failure rate. Little is known about the correlation of tibial slope and anterior tibial translation in ACL deficient and reconstructed knees as well as the correlation of tibial slope and ACL reconstruction outcome.

Purpose/Hypothesis The purpose of this study was to investigate the correlation of tibial slope with anterior tibial translation and ACL reconstruction outcome. It is hypothesized that increased medial tibial slope is associated with increased anterior tibial translation in the ACL deficient knee. Medial tibial slope is neither expected to affect anterior tibial translation in the ACL reconstructed knee nor short-term ACL reconstruction outcome.

Materials and Methods A cohort of 104 patients with unilateral isolated ACL deficiency undergoing hamstring ACL reconstruction by a single surgeon between 2002 and 2004 was followed up prospectively. Preoperative data were collected including patient demographics, time to surgery, subjective and objective International Knee Documentation Committee (IKDC) outcome scores, as well as manual maximum anterior tibial translation measured with the KT-1000 measuring instrument. Medial tibial slope was assessed on long lateral X-rays using the method described by Dejour and Bonnin (1994). Intraoperative data were collected including meniscal integrity; postoperative data were collected at 1-year follow-up including manual maximum anterior tibial translation (KT-1000 measured), and subjective and objective IKDC scores.

Results A significant positive correlation was seen between medial tibial slope in ACL deficient knees and KT-1000–measured anterior tibial translation (r = 0.24; p = 0.003). The positive relationship increased when meniscal integrity was factored in (r = 0.33; p < 0.001). No significant correlation was seen between medial or lateral meniscal integrity and KT-1000–measured anterior tibial translation (r = −18; p = 0.06). No significant correlation was seen between KT-1000–measured anterior tibial translation and time to surgery. One year postoperatively, 82 patients were assessed, while 26 patients were lost to follow-up; no significant correlation was found between increased medial tibial slope and poor ACL reconstruction outcome measured by post-ACL reconstruction anterior tibial translation (KT-1000) or subjective and objective IKDC scores.

Conclusion Increased medial tibial slope is associated with increased (KT-1000 measured) anterior tibial translation in ACL deficient knees. No significant correlation is found between increased medial tibial slope and poor short-term ACL reconstruction outcome.

 
  • References

  • 1 Fink C, Hoser C, Hackl W, Navarro RA, Benedetto KP. Long-term outcome of operative or nonoperative treatment of anterior cruciate ligament rupture--is sports activity a determining variable?. Int J Sports Med 2001; 22 (04) 304-309
  • 2 Kessler MA, Behrend H, Henz S, Stutz G, Rukavina A, Kuster MS. Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg Sports Traumatol Arthrosc 2008; 16 (05) 442-448
  • 3 Griffin LY, Agel J, Albohm MJ. , et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg 2000; 8 (03) 141-150
  • 4 Hewett TE. Neuromuscular and hormonal factors associated with knee injuries in female athletes. Strategies for intervention. Sports Med 2000; 29 (05) 313-327
  • 5 Hewett TE, Myer GD, Ford KR. Anterior cruciate ligament injuries in female athletes: part 1, mechanisms and risk factors. Am J Sports Med 2006; 34 (02) 299-311
  • 6 Hewett TE, Myer GD, Ford KR. , et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 2005; 33 (04) 492-501
  • 7 Anderson AF, Dome DC, Gautam S, Awh MH, Rennirt GW. Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med 2001; 29 (01) 58-66
  • 8 Bisson LJ, Gurske-DePerio J. Axial and sagittal knee geometry as a risk factor for noncontact anterior cruciate ligament tear: a case-control study. Arthroscopy 2010; 26 (07) 901-906
  • 9 Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF. The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 2006; 22 (08) 894-899
  • 10 Butler DL, Noyes FR, Grood ES. Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am 1980; 62 (02) 259-270
  • 11 Posthumus M, Collins M, September AV, Schwellnus MP. The intrinsic risk factors for ACL ruptures: an evidence-based review. Phys Sportsmed 2011; 39 (01) 62-73
  • 12 Sonnery-Cottet B, Archbold P, Cucurulo T. , et al. The influence of the tibial slope and the size of the intercondylar notch on rupture of the anterior cruciate ligament. J Bone Joint Surg Br 2011; 93 (11) 1475-1478
  • 13 Shao Q, MacLeod TD, Manal K, Buchanan TS. Estimation of ligament loading and anterior tibial translation in healthy and ACL-deficient knees during gait and the influence of increasing tibial slope using EMG-driven approach. Ann Biomed Eng 2011; 39 (01) 110-121
  • 14 Souryal TO, Freeman TR. Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med 1993; 21 (04) 535-539
  • 15 Shambaugh JP, Klein A, Herbert JH. Structural measures as predictors of injury basketball players. Med Sci Sports Exerc 1991; 23 (05) 522-527
  • 16 McLean SG, Oh YK, Palmer ML. , et al. The relationship between anterior tibial acceleration, tibial slope, and ACL strain during a simulated jump landing task. J Bone Joint Surg Am 2011; 93 (14) 1310-1317
  • 17 Christensen JJ, Krych AJ, Engasser WM, Vanhees MK, Collins MS, Dahm DL. Lateral tibial posterior slope is increased in patients with early graft failure after anterior cruciate ligament reconstruction. Am J Sports Med 2015; 43 (10) 2510-2514
  • 18 Dejour H, Bonnin M. Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br 1994; 76 (05) 745-749
  • 19 Hashemi J, Chandrashekar N, Gill B. , et al. The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am 2008; 90 (12) 2724-2734
  • 20 Stijak L, Herzog RF, Schai P. Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc 2008; 16 (02) 112-117
  • 21 Wordeman SC, Quatman CE, Kaeding CC, Hewett TE. In vivo evidence for tibial plateau slope as a risk factor for anterior cruciate ligament injury: a systematic review and meta-analysis. Am J Sports Med 2012; 40 (07) 1673-1681
  • 22 Zelisko JA, Noble HB, Porter M. A comparison of men's and women's professional basketball injuries. Am J Sports Med 1982; 10 (05) 297-299
  • 23 Hudek R, Schmutz S, Regenfelder F, Fuchs B, Koch PP. Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res 2009; 467 (08) 2066-2072
  • 24 Li Y, Hong L, Feng H. , et al. Posterior tibial slope influences static anterior tibial translation in anterior cruciate ligament reconstruction: a minimum 2-year follow-up study. Am J Sports Med 2014; 42 (04) 927-933
  • 25 Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD. Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 2004; 32 (02) 376-382
  • 26 Myer GD, Ford KR, Paterno MV, Nick TG, Hewett TE. The effects of generalized joint laxity on risk of anterior cruciate ligament injury in young female athletes. Am J Sports Med 2008; 36 (06) 1073-1080