Semin Liver Dis 2018; 38(04): 308-319
DOI: 10.1055/s-0038-1669939
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Homeostatic Role of Autophagy in Hepatocytes

Bilon Khambu
1   Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
,
Shengmin Yan
1   Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
,
Nazmul Huda
1   Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
,
Gang Liu
1   Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
,
Xiao-Ming Yin
1   Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
› Author Affiliations
Further Information

Publication History

Publication Date:
24 October 2018 (online)

Abstract

Autophagy actively participates in the physiological process of the liver. While the direct effect of autophagy may be limited to the sequestration and degradation of a selective cargo, its overall impact can be broad, affecting many more physiological processes regulated by the particular cargo. This review will discuss two aspects of the importance of autophagy in the liver: metabolic regulation in response to feeding and starvation, and pathological consequences in the absence of autophagy. These two aspects illustrate the homeostatic functions of autophagy in the liver, one in a more direct fashion, regulating the cellular nutrient supply, and the other in a more indirect fashion, controlling the pathological signaling triggered by the abnormal accumulation of cargos. Remarkably, the hepatic pathology in autophagy-deficient livers does not seem different from that presented in other chronic liver diseases. Autophagy deficiency can be a model for the study of the relevant molecular mechanisms.

 
  • References

  • 1 Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms. Autophagy 2018; 14 (02) 207-215
  • 2 Tasset I, Cuervo AM. Role of chaperone-mediated autophagy in metabolism. FEBS J 2016; 283 (13) 2403-2413
  • 3 Ueno T, Komatsu M. Autophagy in the liver: functions in health and disease. Nat Rev Gastroenterol Hepatol 2017; 14 (03) 170-184
  • 4 Czaja MJ, Ding WX, Donohue Jr TM. , et al. Functions of autophagy in normal and diseased liver. Autophagy 2013; 9 (08) 1131-1158
  • 5 Yan S, Huda N, Khambu B, Yin XM. Relevance of autophagy to fatty liver diseases and potential therapeutic applications. Amino Acids 2017; 49 (12) 1965-1979
  • 6 Yin XM, Ding WX, Gao W. Autophagy in the liver. Hepatology 2008; 47 (05) 1773-1785
  • 7 Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways. Nature 2015; 517 (7534): 302-310
  • 8 Yin Z, Pascual C, Klionsky DJ. Autophagy: machinery and regulation. Microb Cell 2016; 3 (12) 588-596
  • 9 Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011; 147 (04) 728-741
  • 10 Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 2013; 14 (12) 759-774
  • 11 Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 2009; 10 (07) 458-467
  • 12 Chen Y, Yu L. Autophagic lysosome reformation. Exp Cell Res 2013; 319 (02) 142-146
  • 13 Yu L, McPhee CK, Zheng L. , et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010; 465 (7300): 942-946
  • 14 Kimura S, Noda T, Yoshimori T. Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct 2008; 33 (01) 109-122
  • 15 Stolz A, Ernst A, Dikic I. Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 2014; 16 (06) 495-501
  • 16 Okamoto K. Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol 2014; 205 (04) 435-445
  • 17 Rogov V, Dötsch V, Johansen T, Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 2014; 53 (02) 167-178
  • 18 Schworer CM, Cox JR, Mortimore GE. Alteration of lysosomal density by sequestered glycogen during deprivation-induced autophagy in rat liver. Biochem Biophys Res Commun 1979; 87 (01) 163-170
  • 19 Kalamidas SA, Kotoulas OB. The degradation of glycogen in the lysosomes of newborn rat hepatocytes: glycogen-, maltose- and isomaltose-hydrolyzing acid alpha glucosidase activities in liver. Histol Histopathol 1999; 14 (01) 23-30
  • 20 Ezaki J, Matsumoto N, Takeda-Ezaki M. , et al. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy 2011; 7 (07) 727-736
  • 21 Jiao L, Zhang HL, Li DD. , et al. Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic degradation of HK2 (hexokinase 2). Autophagy 2018; 14 (04) 671-684
  • 22 Zechner R, Madeo F, Kratky D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat Rev Mol Cell Biol 2017; 18 (11) 671-684
  • 23 Sathyanarayan A, Mashek MT, Mashek DG. ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell Reports 2017; 19 (01) 1-9
  • 24 Feng Y, Yao Z, Klionsky DJ. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol 2015; 25 (06) 354-363
  • 25 Lee JM, Wagner M, Xiao R. , et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 2014; 516 (7529): 112-115
  • 26 Seok S, Fu T, Choi SE. , et al. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 2014; 516 (7529): 108-111
  • 27 Ma D, Molusky MM, Song J. , et al. Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD. Mol Endocrinol 2013; 27 (10) 1643-1654
  • 28 Komatsu M, Waguri S, Ueno T. , et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 2005; 169 (03) 425-434
  • 29 Shibata M, Yoshimura K, Furuya N. , et al. The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem Biophys Res Commun 2009; 382 (02) 419-423
  • 30 Li Y, Chao X, Yang L. , et al. Impaired fasting-induced adaptive lipid droplet biogenesis in liver-specific Atg5-deficient mouse liver is mediated by persistent Nrf2 activation. Am J Pathol 2018; 188 (08) 1833-1846
  • 31 Kim M, Sandford E, Gatica D. , et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. eLife 2016; 5: 5
  • 32 Kuma A, Hatano M, Matsui M. , et al. The role of autophagy during the early neonatal starvation period. Nature 2004; 432 (7020): 1032-1036
  • 33 Ni HM, Woolbright BL, Williams J. , et al. Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy. J Hepatol 2014; 61 (03) 617-625
  • 34 Komatsu M, Waguri S, Koike M. , et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007; 131 (06) 1149-1163
  • 35 Komatsu M, Kurokawa H, Waguri S. , et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 2010; 12 (03) 213-223
  • 36 Saito T, Ichimura Y, Taguchi K. , et al. p62/SQSTM1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming. Nat Commun 2016; 7: 12030
  • 37 Takamura A, Komatsu M, Hara T. , et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev 2011; 25 (08) 795-800
  • 38 Khambu B, Huda N, Chen X. , et al. HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J Clin Invest 2018; 128 (06) 2419-2435
  • 39 Hernández-Gea V, Ghiassi-Nejad Z, Rozenfeld R. , et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 2012; 142 (04) 938-946
  • 40 Liu K, Zhao E, Ilyas G. , et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy 2015; 11 (02) 271-284
  • 41 Mathew R, Karp CM, Beaudoin B. , et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009; 137 (06) 1062-1075
  • 42 Tian Y, Kuo CF, Sir D. , et al. Autophagy inhibits oxidative stress and tumor suppressors to exert its dual effect on hepatocarcinogenesis. Cell Death Differ 2015; 22 (06) 1025-1034
  • 43 Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 2013; 53: 401-426
  • 44 Nishida Y, Arakawa S, Fujitani K. , et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 2009; 461 (7264): 654-658
  • 45 Wang Y, Singh R, Massey AC. , et al. Loss of macroautophagy promotes or prevents fibroblast apoptosis depending on the death stimulus. J Biol Chem 2008; 283 (08) 4766-4777
  • 46 Matsumoto N, Ezaki J, Komatsu M. , et al. Comprehensive proteomics analysis of autophagy-deficient mouse liver. Biochem Biophys Res Commun 2008; 368 (03) 643-649
  • 47 Hernandez C, Huebener P, Pradere JP, Antoine DJ, Friedman RA, Schwabe RF. HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J Clin Invest 2018; 128 (06) 2436-2451
  • 48 Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 2005; 5 (04) 331-342
  • 49 Bonaldi T, Talamo F, Scaffidi P. , et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 2003; 22 (20) 5551-5560
  • 50 Lamkanfi M, Sarkar A, Vande Walle L. , et al. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J Immunol 2010; 185 (07) 4385-4392
  • 51 Lu B, Nakamura T, Inouye K. , et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature 2012; 488 (7413): 670-674
  • 52 He WT, Wan H, Hu L. , et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 2015; 25 (12) 1285-1298
  • 53 Kayagaki N, Stowe IB, Lee BL. , et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015; 526 (7575): 666-671
  • 54 Shi J, Zhao Y, Wang K. , et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015; 526 (7575): 660-665
  • 55 Ge X, Antoine DJ, Lu Y. , et al. High mobility group box-1 (HMGB1) participates in the pathogenesis of alcoholic liver disease (ALD). J Biol Chem 2014; 289 (33) 22672-22691
  • 56 Tsung A, Sahai R, Tanaka H. , et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 2005; 201 (07) 1135-1143
  • 57 Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J 2011; 30 (23) 4701-4711
  • 58 Saitoh T, Fujita N, Jang MH. , et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008; 456 (7219): 264-268
  • 59 Nakahira K, Haspel JA, Rathinam VA. , et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 2011; 12 (03) 222-230
  • 60 Szabo G, Csak T. Inflammasomes in liver diseases. J Hepatol 2012; 57 (03) 642-654
  • 61 Sun Q, Loughran P, Shapiro R. , et al. Redox-dependent regulation of hepatocyte absent in melanoma 2 inflammasome activation in sterile liver injury in mice. Hepatology 2017; 65 (01) 253-268
  • 62 Vénéreau E, Ceriotti C, Bianchi ME. DAMPs from cell death to new life. Front Immunol 2015; 6: 422
  • 63 Gouw AS, Clouston AD, Theise ND. Ductular reactions in human liver: diversity at the interface. Hepatology 2011; 54 (05) 1853-1863
  • 64 Bria A, Marda J, Zhou J. , et al. Hepatic progenitor cell activation in liver repair. Liver Res 2017; 1 (02) 81-87
  • 65 Pusterla T, Nèmeth J, Stein I. , et al. Receptor for advanced glycation endproducts (RAGE) is a key regulator of oval cell activation and inflammation-associated liver carcinogenesis in mice. Hepatology 2013; 58 (01) 363-373
  • 66 Jakubowski A, Ambrose C, Parr M. , et al. TWEAK induces liver progenitor cell proliferation. J Clin Invest 2005; 115 (09) 2330-2340
  • 67 Takase HM, Itoh T, Ino S. , et al. FGF7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration. Genes Dev 2013; 27 (02) 169-181
  • 68 Inami Y, Waguri S, Sakamoto A. , et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 2011; 193 (02) 275-284
  • 69 Ni HM, McGill MR, Chao X. , et al. Removal of acetaminophen protein adducts by autophagy protects against acetaminophen-induced liver injury in mice. J Hepatol 2016; 65 (02) 354-362
  • 70 Rountree CB, Mishra L, Willenbring H. Stem cells in liver diseases and cancer: recent advances on the path to new therapies. Hepatology 2012; 55 (01) 298-306
  • 71 Mu X, Español-Suñer R, Mederacke I. , et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest 2015; 125 (10) 3891-3903
  • 72 Qu X, Yu J, Bhagat G. , et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112 (12) 1809-1820
  • 73 Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 2003; 100 (25) 15077-15082
  • 74 Bao L, Chandra PK, Moroz K. , et al. Impaired autophagy response in human hepatocellular carcinoma. Exp Mol Pathol 2014; 96 (02) 149-154
  • 75 Lan SH, Wu SY, Zuchini R. , et al. Autophagy suppresses tumorigenesis of hepatitis B virus-associated hepatocellular carcinoma through degradation of microRNA-224. Hepatology 2014; 59 (02) 505-517
  • 76 Wu SY, Lan SH, Wu SR. , et al. Hepatocellular carcinoma-related cyclin D1 is selectively regulated by autophagy degradation system. Hepatology 2018; 68 (01) 141-154
  • 77 Sanz L, Sanchez P, Lallena MJ, Diaz-Meco MT, Moscat J. The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. EMBO J 1999; 18 (11) 3044-3053
  • 78 Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 2009; 137 (06) 1001-1004
  • 79 Gao C, Cao W, Bao L. , et al. Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol 2010; 12 (08) 781-790
  • 80 Mitsuishi Y, Taguchi K, Kawatani Y. , et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 2012; 22 (01) 66-79
  • 81 Ichimura Y, Waguri S, Sou YS. , et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 2013; 51 (05) 618-631
  • 82 Liu K, Lee J, Kim JY. , et al. Mitophagy controls the activities of tumor suppressor p53 to regulate hepatic cancer stem cells. Mol Cell 2017; 68 (02) 281-292.e5
  • 83 Sou YS, Waguri S, Iwata J. , et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 2008; 19 (11) 4762-4775
  • 84 Saitoh T, Fujita N, Hayashi T. , et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci U S A 2009; 106 (49) 20842-20846
  • 85 Malhotra R, Warne JP, Salas E, Xu AW, Debnath J. Loss of Atg12, but not Atg5, in pro-opiomelanocortin neurons exacerbates diet-induced obesity. Autophagy 2015; 11 (01) 145-154
  • 86 Kaizuka T, Mizushima N. Atg13 is essential for autophagy and cardiac development in mice. Mol Cell Biol 2015; 36 (04) 585-595
  • 87 Gan B, Peng X, Nagy T, Alcaraz A, Gu H, Guan JL. Role of FIP200 in cardiac and liver development and its regulation of TNFalpha and TSC-mTOR signaling pathways. J Cell Biol 2006; 175 (01) 121-133
  • 88 Jaber N, Dou Z, Chen JS. , et al. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc Natl Acad Sci U S A 2012; 109 (06) 2003-2008
  • 89 Hara T, Nakamura K, Matsui M. , et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441 (7095): 885-889
  • 90 Amir M, Zhao E, Fontana L. , et al. Inhibition of hepatocyte autophagy increases tumor necrosis factor-dependent liver injury by promoting caspase-8 activation. Cell Death Differ 2013; 20 (07) 878-887
  • 91 Sun Y, Li TY, Song L. , et al. Liver-specific deficiency of unc-51 like kinase 1 and 2 protects mice from acetaminophen-induced liver injury. Hepatology 2018; 67 (06) 2397-2413