Subscribe to RSS
DOI: 10.1055/s-0038-1670657
Docking of Meprin α to Heparan Sulphate Protects the Endothelium from Inflammatory Cell Extravasation
Funding This study was funded by Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria, Jubilee Foundation of the Austrian National Bank (Grant 16187 to G.K.), The Austrian Science Foundation (FWF, Grant P 27848-B28) and Deutsche Forschungsgemeinschaft SFB877, project A9.Publication History
20 March 2018
08 August 2018
Publication Date:
20 September 2018 (online)
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease characterized by increased pulmonary pressure and vascular remodelling as a consequence of smooth muscle cell proliferation, endothelial cell dysfunction and inflammatory infiltrates. Meprin α is a metalloproteinase whose substrates include adhesion and cell–cell contact molecules involved in the process of immune cell extravasation. In this study, we aimed to unravel the role of meprin α in PAH-induced vascular remodelling. Our results showed that meprin α was present in the apical membrane of endothelial cells in the lungs and pulmonary arteries of donors and idiopathic PAH (IPAH) patients. Elevated circulating meprin α levels were detected in the plasma of IPAH patients. In vitro binding assays and electron microscopy confirmed binding of meprin α to the glycocalyx of human pulmonary artery endothelial cells (hPAECs). Enzymatic and genetic approaches identified heparan sulphate (HS) as an important determinant of the meprin α binding capacity to hPAEC. Meprin α treatment protected from excessive neutrophil infiltration and the protective effect observed in the presence of neutrophils was partially reversed by removal of HS from hPAEC. Importantly, HS levels in pulmonary arteries were decreased in IPAH patients and binding of meprin α to HS was impaired in IPAH hPAEC. In summary, our results suggest a role of HS in docking meprin α to the endothelium and thus in the modulation of inflammatory cell extravasation. In IPAH, the decreased endothelial HS results in the reduction of meprin α binding which might contribute to enhanced inflammatory cell extravasation and potentially to pathological vascular remodelling.
Authors' Contributions
Data acquisition, analysis and design: V.B., M.W., T.B., Z.B., K.J., G.L., D.K. and G.K. Human material: G.K., K.S. and W.K. Production of the recombinant meprin α: F.P. Drafting of the manuscript: V.B., G.K., K.M., A.H., A.O. and C.B.P.
-
References
- 1 Hoeper MM, Barberà JA, Channick RN. , et al. Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension. J Am Coll Cardiol 2009; 54 (1, Suppl): S85-S96
- 2 Simonneau G, Gatzoulis MA, Adatia I. , et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2013; 62 (25, Suppl): D34-D41
- 3 Eddahibi S, Morrell N, d'Ortho MP, Naeije R, Adnot S. Pathobiology of pulmonary arterial hypertension. Eur Respir J 2002; 20 (06) 1559-1572
- 4 Guignabert C, Tu L, Girerd B. , et al. New molecular targets of pulmonary vascular remodeling in pulmonary arterial hypertension: importance of endothelial communication. Chest 2015; 147 (02) 529-537
- 5 Klinger JR, Abman SH, Gladwin MT. Nitric oxide deficiency and endothelial dysfunction in pulmonary arterial hypertension. Am J Respir Crit Care Med 2013; 188 (06) 639-646
- 6 Rajendran P, Rengarajan T, Thangavel J. , et al. The vascular endothelium and human diseases. Int J Biol Sci 2013; 9 (10) 1057-1069
- 7 Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 2007; 9: 121-167
- 8 Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007; 454 (03) 345-359
- 9 Mehta D, Ravindran K, Kuebler WM. Novel regulators of endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 2014; 307 (12) L924-L935
- 10 Curry FE, Adamson RH. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 2012; 40 (04) 828-839
- 11 Endo K, Takino T, Miyamori H. , et al. Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J Biol Chem 2003; 278 (42) 40764-40770
- 12 Li Q, Park PW, Wilson CL, Parks WC. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 2002; 111 (05) 635-646
- 13 Massena S, Christoffersson G, Hjertström E. , et al. A chemotactic gradient sequestered on endothelial heparan sulfate induces directional intraluminal crawling of neutrophils. Blood 2010; 116 (11) 1924-1931
- 14 Biasin V, Wygrecka M, Marsh LM. , et al. Meprin β contributes to collagen deposition in lung fibrosis. Sci Rep 2017; 7: 39969
- 15 Quintero PA, Knolle MD, Cala LF, Zhuang Y, Owen CA. Matrix metalloproteinase-8 inactivates macrophage inflammatory protein-1 alpha to reduce acute lung inflammation and injury in mice. J Immunol 2010; 184 (03) 1575-1588
- 16 Dean RA, Cox JH, Bellac CL, Doucet A, Starr AE, Overall CM. Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. Blood 2008; 112 (08) 3455-3464
- 17 Biasin V, Marsh LM, Egemnazarov B. , et al. Meprin β, a novel mediator of vascular remodelling underlying pulmonary hypertension. J Pathol 2014; 233 (01) 7-17
- 18 Bedau T, Peters F, Prox J. , et al. Ectodomain shedding of CD99 within highly conserved regions is mediated by the metalloprotease meprin β and promotes transendothelial cell migration. FASEB J 2017; 31 (03) 1226-1237
- 19 Banerjee S, Oneda B, Yap LM. , et al. MEP1A allele for meprin A metalloprotease is a susceptibility gene for inflammatory bowel disease. Mucosal Immunol 2009; 2 (03) 220-231
- 20 Herzog C, Haun RS, Kaushal V, Mayeux PR, Shah SV, Kaushal GP. Meprin A and meprin alpha generate biologically functional IL-1beta from pro-IL-1beta. Biochem Biophys Res Commun 2009; 379 (04) 904-908
- 21 Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 2014; 115 (01) 165-175
- 22 Marsh LM, Jandl K, Grünig G. , et al. The inflammatory cell landscape in the lungs of patients with idiopathic pulmonary arterial hypertension. Eur Respir J 2018; 51 (01) 1701214
- 23 Jain PP, Leber R, Nagaraj C. , et al. Liposomal nanoparticles encapsulating iloprost exhibit enhanced vasodilation in pulmonary arteries. Int J Nanomedicine 2014; 9: 3249-3261
- 24 Nagaraj C, Tang B, Nagy BM. , et al. Docosahexaenoic acid causes rapid pulmonary arterial relaxation via KCa channel-mediated hyperpolarisation in pulmonary hypertension. Eur Respir J 2016; 48 (04) 1127-1136
- 25 Hoffmann J, Wilhelm J, Marsh LM. , et al. Distinct differences in gene expression patterns in pulmonary arteries of patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis with pulmonary hypertension. Am J Respir Crit Care Med 2014; 190 (01) 98-111
- 26 Hoffmann J, Marsh LM, Pieper M. , et al. Compartment-specific expression of collagens and their processing enzymes in intrapulmonary arteries of IPAH patients. Am J Physiol Lung Cell Mol Physiol 2015; 308 (10) L1002-L1013
- 27 McLean IW, Nakane PK. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem 1974; 22 (12) 1077-1083
- 28 Becker-Pauly C, Höwel M, Walker T. , et al. The alpha and beta subunits of the metalloprotease meprin are expressed in separate layers of human epidermis, revealing different functions in keratinocyte proliferation and differentiation. J Invest Dermatol 2007; 127 (05) 1115-1125
- 29 Bärnthaler T, Maric J, Platzer W. , et al. The role of PGE2 in alveolar epithelial and lung microvascular endothelial crosstalk. Sci Rep 2017; 7 (01) 7923
- 30 Koodie L, Yuan H, Pumper JA. , et al. Morphine inhibits migration of tumor-infiltrating leukocytes and suppresses angiogenesis associated with tumor growth in mice. Am J Pathol 2014; 184 (04) 1073-1084
- 31 Balenga NA, Aflaki E, Kargl J. , et al. GPR55 regulates cannabinoid 2 receptor-mediated responses in human neutrophils. Cell Res 2011; 21 (10) 1452-1469
- 32 Wang L, Fuster M, Sriramarao P, Esko JD. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 2005; 6 (09) 902-910
- 33 Smith CH, Barker JN, Morris RW, MacDonald DM, Lee TH. Neuropeptides induce rapid expression of endothelial cell adhesion molecules and elicit granulocytic infiltration in human skin. J Immunol 1993; 151 (06) 3274-3282
- 34 Huguenin M, Müller EJ, Trachsel-Rösmann S. , et al. The metalloprotease meprinbeta processes E-cadherin and weakens intercellular adhesion. PLoS One 2008; 3 (05) e2153
- 35 Jefferson T, Auf dem Keller U, Bellac C. , et al. The substrate degradome of meprin metalloproteases reveals an unexpected proteolytic link between meprin β and ADAM10. Cell Mol Life Sci 2013; 70 (02) 309-333
- 36 Long L, Ormiston ML, Yang X. , et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat Med 2015; 21 (07) 777-785
- 37 Daley E, Emson C, Guignabert C. , et al. Pulmonary arterial remodeling induced by a Th2 immune response. J Exp Med 2008; 205 (02) 361-372
- 38 Cornish-Bowden A. The origins of enzyme kinetics. FEBS Lett 2013; 587 (17) 2725-2730
- 39 Parish CR. Heparan sulfate and inflammation. Nat Immunol 2005; 6 (09) 861-862
- 40 Tang J, Zarbock A, Gomez I. , et al. Adam17-dependent shedding limits early neutrophil influx but does not alter early monocyte recruitment to inflammatory sites. Blood 2011; 118 (03) 786-794
- 41 Simon T, Bromberg JS. Regulation of the immune system by laminins. Trends Immunol 2017; 38 (11) 858-871
- 42 Herter JM, Rossaint J, Block H, Welch H, Zarbock A. Integrin activation by P-Rex1 is required for selectin-mediated slow leukocyte rolling and intravascular crawling. Blood 2013; 121 (12) 2301-2310
- 43 Hafezi-Moghadam A, Thomas KL, Prorock AJ, Huo Y, Ley K. L-selectin shedding regulates leukocyte recruitment. J Exp Med 2001; 193 (07) 863-872
- 44 Walcheck B, Kahn J, Fisher JM. , et al. Neutrophil rolling altered by inhibition of L-selectin shedding in vitro. Nature 1996; 380 (6576): 720-723
- 45 Minder P, Bayha E, Becker-Pauly C, Sterchi EE. Meprinα transactivates the epidermal growth factor receptor (EGFR) via ligand shedding, thereby enhancing colorectal cancer cell proliferation and migration. J Biol Chem 2012; 287 (42) 35201-35211
- 46 Arnold P, Boll I, Rothaug M. , et al. Meprin metalloproteases generate biologically active soluble interleukin-6 receptor to induce trans-signaling. Sci Rep 2017; 7: 44053
- 47 Vazeille E, Bringer MA, Gardarin A. , et al. Role of meprins to protect ileal mucosa of Crohn's disease patients from colonization by adherent-invasive E. coli. PLoS One 2011; 6 (06) e21199
- 48 Wichert R, Ermund A, Schmidt S. , et al. Mucus detachment by host metalloprotease meprin β requires shedding of its inactive pro-form, which is abrogated by the pathogenic protease RgpB. Cell Reports 2017; 21 (08) 2090-2103
- 49 Wu CY, Asano Y, Taniguchi T, Sato S, Yu HS. Serum level of circulating syndecan-1: a possible association with proliferative vasculopathy in systemic sclerosis. J Dermatol 2016; 43 (01) 63-66
- 50 Stacher E, Graham BB, Hunt JM. , et al. Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med 2012; 186 (03) 261-272
- 51 Balabanian K, Foussat A, Dorfmüller P. , et al. CX(3)C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med 2002; 165 (10) 1419-1425
- 52 Dorfmüller P, Zarka V, Durand-Gasselin I. , et al. Chemokine RANTES in severe pulmonary arterial hypertension. Am J Respir Crit Care Med 2002; 165 (04) 534-539