RSS-Feed abonnieren
DOI: 10.1055/s-0038-1670682
Scapholunate Ligament Internal Brace 360 Tenodesis (SLITT) Procedure: A Biomechanical Study
Publikationsverlauf
20. März 2018
02. August 2018
Publikationsdatum:
18. September 2018 (online)
Abstract
Background Twelve paired fresh frozen cadaveric wrists were randomized to a 360-degree tenodesis repair group or the 360-degree tenodesis repair with an internal brace (suture tape) construct.
Case Description The specimens were preloaded to 5 N and subsequently biomechanically loaded to failure, at a rate of 0.1 mm/s on a jig that allowed for axial load. The maximum load and mode of failure were recorded. Load to failure in the 360 tenodesis group with internal brace was 283.47 ± 100.25 N, compared with the 360 tenodesis group only, whose yield strength was 143.61 ± 90.54 N. The mode of failure within the internal brace construct was either through knot slippage, graft disruption, or bone separation from strength testing construct. The 360 tenodesis group tended to fail via graft slippage or graft rupture.
Literature Review The management of scapholunate instability can be a difficult problem to treat. Traditionally, many of the surgical reconstructions have focused upon dorsal ligament reconstruction with Kirschner (K) wire fixation. This results in prolonged immobilization of the wrist with varied outcomes, in part due to the multiaxial instability that may persist due to concomitant volar ligament disruption. To address this instability, surgical techniques have been devised that address both the volar and dorsal ligament injuries.
Clinical Relevance Scapholunate reconstruction with a 360-degree tenodesis and internal brace augmentation (SLITT procedure) provided superior biomechanical stability than tenodesis alone.
Keywords
internal brace - scapholunate instability - scapholunate reconstruction - suture tape - internal brace augmentationEthical Approval
This study was performed at Arthrex HQ in Naples, Florida and was conducted per their review board.
-
References
- 1 Garcia-Elias M, Lluch AL, Stanley JK. Three-ligament tenodesis for the treatment of scapholunate dissociation: indications and surgical technique. J Hand Surg Am 2006; 31 (01) 125-134
- 2 Pomerance J. Outcome after repair of the scapholunate interosseous ligament and dorsal capsulodesis for dynamic scapholunate instability due to trauma. J Hand Surg Am 2006; 31 (08) 1380-1386
- 3 Rainbow MJ, Wolff AL, Crisco JJ, Wolfe SW. Functional kinematics of the wrist. J Hand Surg Eur Vol 2016; 41 (01) 7-21
- 4 Linscheid RL, Dobyns JH, Beabout JW, Bryan RS. Traumatic instability of the wrist. Diagnosis, classification, and pathomechanics. J Bone Joint Surg Am 1972; 54 (08) 1612-1632
- 5 Blatt G. Capsulodesis in reconstructive hand surgery. Dorsal capsulodesis for the unstable scaphoid and volar capsulodesis following excision of the distal ulna. Hand Clin 1987; 3 (01) 81-102
- 6 Brunelli GA, Brunelli GR. A new technique to correct carpal instability with scaphoid rotary subluxation: a preliminary report. J Hand Surg Am 1995; 20 (3, Pt 2): S82-S85
- 7 Darlis NA, Kaufmann RA, Giannoulis F, Sotereanos DG. Arthroscopic debridement and closed pinning for chronic dynamic scapholunate instability. J Hand Surg Am 2006; 31 (03) 418-424
- 8 Darlis NA, Weiser RW, Sotereanos DG. Partial scapholunate ligament injuries treated with arthroscopic debridement and thermal shrinkage. J Hand Surg Am 2005; 30 (05) 908-914
- 9 Linscheid RL, Dobyns JH. Treatment of scapholunate dissociation. Rotatory subluxation of the scaphoid. Hand Clin 1992; 8 (04) 645-652
- 10 Moran SL, Cooney WP, Berger RA, Strickland J. Capsulodesis for the treatment of chronic scapholunate instability. J Hand Surg Am 2005; 30 (01) 16-23
- 11 Taleisnik J. The Wrist. Churchill Livingstone, NY: 1985
- 12 Van Den Abbeele KL, Loh YC, Stanley JK, Trail IA. Early results of a modified Brunelli procedure for scapholunate instability. J Hand Surg [Br] 1998; 23 (02) 258-261
- 13 Berger RA. The gross and histologic anatomy of the scapholunate interosseous ligament. J Hand Surg Am 1996; 21 (02) 170-178
- 14 Chee KG, Chin AY, Chew EM, Garcia-Elias M. Antipronation spiral tenodesis--a surgical technique for the treatment of perilunate instability. J Hand Surg Am 2012; 37 (12) 2611-2618
- 15 Henry M. Reconstruction of both volar and dorsal limbs of the scapholunate interosseous ligament. J Hand Surg Am 2013; 38 (08) 1625-1634
- 16 Short WH, Werner FW, Green JK, Masaoka S. Biomechanical evaluation of ligamentous stabilizers of the scaphoid and lunate. J Hand Surg Am 2002; 27 (06) 991-1002
- 17 Short WH, Werner FW, Green JK, Masaoka S. Biomechanical evaluation of the ligamentous stabilizers of the scaphoid and lunate: Part II. J Hand Surg Am 2005; 30 (01) 24-34
- 18 Short WH, Werner FW, Green JK, Sutton LG, Brutus JP. Biomechanical evaluation of the ligamentous stabilizers of the scaphoid and lunate: part III. J Hand Surg Am 2007; 32 (03) 297-309
- 19 Aviles AJ, Lee SK, Hausman MR. Arthroscopic reduction-association of the scapholunate. Arthroscopy 2007; 23 (01) 105.e1-105.e5
- 20 Berger RA, Imeada T, Berglund L, An KN. Constraint and material properties of the subregions of the scapholunate interosseous ligament. J Hand Surg Am 1999; 24 (05) 953-962
- 21 Kitay A, Wolfe SW. Scapholunate instability: current concepts in diagnosis and management. J Hand Surg Am 2012; 37 (10) 2175-2196
- 22 Yao J, Zlotolow DA, Lee SK. ScaphoLunate Axis Method. J Wrist Surg 2016; 5 (01) 59-66
- 23 van Kampen RJ, Bayne CO, Moran SL. A new technique for volar capsulodesis for isolated palmar scapholunate interosseous ligament injuries: a cadaveric study and case report. J Wrist Surg 2015; 4 (04) 239-245
- 24 Ho PC, Wong CW, Tse WL. Arthroscopic-assisted combined dorsal and volar scapholunate ligament reconstruction with tendon graft for chronic SL instability. J Wrist Surg 2015; 4 (04) 252-263
- 25 Mathoulin CL, Dauphin N, Wahegaonkar AL. Arthroscopic dorsal capsuloligamentous repair in chronic scapholunate ligament tears. Hand Clin 2011; 27 (04) 563-572
- 26 Berger RA, Blair WF, Crowninshield RD, Flatt AE. The scapholunate ligament. J Hand Surg Am 1982; 7 (01) 87-91