Subscribe to RSS
DOI: 10.1055/s-0038-1670707
Electric and Acoustic Stimulation in Cochlear Implant Recipients with Hearing Preservation
Publication History
Publication Date:
26 October 2018 (online)
Abstract
Hearing loss affects 30 million people in the United States, and a subset of these patients have normal low-frequency hearing and ski-sloped high-frequency hearing loss. For these patients, hearing aids alone may not provide adequate benefit. Cochlear implantation alone has been utilized to improve speech perception. The addition of high-frequency electric hearing to low-frequency acoustic hearing in these patients is beneficial. Technical improvements have allowed preservation of low-frequency hearing in cochlear implant recipients, allowing for electric and acoustic stimulation in the same ear with significant improvements in speech perception, sound localization, music appreciation, and quality of life.
-
References
- 1 Hoffman HJ, Dobie RA, Losonczy KG, Themann CL, Flamme GA. Declining prevalence of hearing loss in US adults aged 20 to 69 years. JAMA Otolaryngol Head Neck Surg 2017; 143 (03) 274-285
- 2 Ching TY, Dillon H, Byrne D. Speech recognition of hearing-impaired listeners: predictions from audibility and the limited role of high-frequency amplification. J Acoust Soc Am 1998; 103 (02) 1128-1140
- 3 Turner CW. Hearing loss and the limits of amplification. Audiol Neurootol 2006; 11 (Suppl. 01) 2-5
- 4 von Ilberg C, Kiefer J, Tillein J. , et al. Electric-acoustic stimulation of the auditory system. New technology for severe hearing loss. ORL J Otorhinolaryngol Relat Spec 1999; 61 (06) 334-340
- 5 Gantz BJ, Turner CW. Combining acoustic and electrical hearing. Laryngoscope 2003; 113 (10) 1726-1730
- 6 Hodges AV, Schloffman J, Balkany T. Conservation of residual hearing with cochlear implantation. Am J Otol 1997; 18 (02) 179-183
- 7 Skarzyński H, Lorens A, Piotrowska A. A new method of partial deafness treatment. Med Sci Monit 2003; 9 (04) CS20-CS24
- 8 Gstoettner W, Kiefer J, Baumgartner W-D, Pok S, Peters S, Adunka O. Hearing preservation in cochlear implantation for electric acoustic stimulation. Acta Otolaryngol 2004; 124 (04) 348-352
- 9 Kiefer J, Gstoettner W, Baumgartner W. , et al. Conservation of low-frequency hearing in cochlear implantation. Acta Otolaryngol 2004; 124 (03) 272-280
- 10 James C, Albegger K, Battmer R. , et al. Preservation of residual hearing with cochlear implantation: how and why. Acta Otolaryngol 2005; 125 (05) 481-491
- 11 Gantz BJ, Turner C. Combining acoustic and electrical speech processing: Iowa/Nucleus hybrid implant. Acta Otolaryngol 2004; 124 (04) 344-347
- 12 Lenarz T, Stover T, Buechner A. , et al. Temporal bone results and hearing preservation with a new straight electrode. Audiol Neurootol 2006; 11 (Suppl. 01) 34-41
- 13 Lenarz T. Electro-acoustic stimulation of the cochlea. Editorial. Audiol Neurootol 2009; 14 (Suppl. 01) 1
- 14 Woodson EA, Reiss LAJ, Turner CW, Gfeller K, Gantz BJ. The Hybrid cochlear implant: a review. Adv Otorhinolaryngol 2010; 67: 125-134
- 15 Van Abel KM, Dunn CC, Sladen DP. , et al. Hearing preservation among patients undergoing cochlear implantation. Otol Neurotol 2015; 36 (03) 416-421
- 16 Santa Maria PL, Gluth MB, Yuan Y, Atlas MD, Blevins NH. Hearing preservation surgery for cochlear implantation: a meta-analysis. Otol Neurotol 2014; 35 (10) e256-e269
- 17 Skarzynski H, Lorens A. Electric acoustic stimulation in children. Adv Otorhinolaryngol 2010; 67: 135-143
- 18 Bruce IA, Felton M, Lockley M. , et al. Hearing preservation cochlear implantation in adolescents. Otol Neurotol 2014; 35 (09) 1552-1559
- 19 Skarzyński H, Lorens A, D'Haese P. , et al. Preservation of residual hearing in children and post-lingually deafened adults after cochlear implantation: an initial study. ORL J Otorhinolaryngol Relat Spec 2002; 64 (04) 247-253
- 20 Skarzyński H, Lorens A, Piotrowska A, Podskarbi-Fayette R. Results of partial deafness cochlear implantation using various electrode designs. Audiol Neurootol 2009; 14 (01) (Suppl. 01) 39-45
- 21 Baumgartner WD, Jappel A, Morera C. , et al. Outcomes in adults implanted with the FLEXsoft electrode. Acta Otolaryngol 2007; 127 (06) 579-586
- 22 Helbig S, Baumann U, Hey C, Helbig M. Hearing preservation after complete cochlear coverage in cochlear implantation with the free-fitting FLEXSOFT electrode carrier. Otol Neurotol 2011; 32 (06) 973-979
- 23 Hochmair I, Hochmair E, Nopp P, Waller M, Jolly C. Deep electrode insertion and sound coding in cochlear implants. Hear Res 2015; 322: 14-23
- 24 Mick P, Amoodi H, Shipp D. , et al. Hearing preservation with full insertion of the FLEXsoft electrode. Otol Neurotol 2014; 35 (01) e40-e44
- 25 Prentiss S, Sykes K, Staecker H. Partial deafness cochlear implantation at the University of Kansas: techniques and outcomes. J Am Acad Audiol 2010; 21 (03) 197-203
- 26 Rodgers B, Prentiss S, Staecker H. Expanding cochlear implantation to patients with residual mid and high frequency hearing. Otorinolaringol 2012; 68: 183-190
- 27 Tamir S, Ferrary E, Borel S, Sterkers O, Bozorg Grayeli A. Hearing preservation after cochlear implantation using deeply inserted flex atraumatic electrode arrays. Audiol Neurootol 2012; 17 (05) 331-337
- 28 Usami S, Moteki H, Suzuki N. , et al. Achievement of hearing preservation in the presence of an electrode covering the residual hearing region. Acta Otolaryngol 2011; 131 (04) 405-412
- 29 Bruce IA, Bates JE, Melling C, Mawman D, Green KM. Hearing preservation via a cochleostomy approach and deep insertion of a standard length cochlear implant electrode. Otol Neurotol 2011; 32 (09) 1444-1447
- 30 Nordfalk KF, Rasmussen K, Bunne M, Jablonski GE. Deep round window insertion versus standard approach in cochlear implant surgery. Eur Arch Otorhinolaryngol 2016; 273 (01) 43-50
- 31 Skarzynski H, Lorens A, Zgoda M, Piotrowska A, Skarzynski PH, Szkielkowska A. Atraumatic round window deep insertion of cochlear electrodes. Acta Otolaryngol 2011; 131 (07) 740-749
- 32 Sun CH, Hsu CJ, Chen PR, Wu HP. Residual hearing preservation after cochlear implantation via round window or cochleostomy approach. Laryngoscope 2015; 125 (07) 1715-1719
- 33 Adunka O, Kiefer J. Impact of electrode insertion depth on intracochlear trauma. Otolaryngol Head Neck Surg 2006; 135 (03) 374-382
- 34 Adunka O, Gstoettner W, Hambek M, Unkelbach MH, Radeloff A, Kiefer J. Preservation of basal inner ear structures in cochlear implantation. ORL J Otorhinolaryngol Relat Spec 2004; 66 (06) 306-312
- 35 Buchman CA, Dillon MT, King ER, Adunka MC, Adunka OF, Pillsbury HC. Influence of cochlear implant insertion depth on performance: a prospective randomized trial. Otol Neurotol 2014; 35 (10) 1773-1779
- 36 van der Marel KS, Briaire JJ, Verbist BM, Muurling TJ, Frijns JH. The influence of cochlear implant electrode position on performance. Audiol Neurootol 2015; 20 (03) 202-211
- 37 Holden LK, Finley CC, Firszt JB. , et al. Factors affecting open-set word recognition in adults with cochlear implants. Ear Hear 2013; 34 (03) 342-360
- 38 Rajan G, Tavora-Vieira D, Baumgartner WD. , et al. Hearing preservation cochlear implantation in children: the HEARRING group consensus and practice guide. Cochlear Implants Int 2018; 19 (01) 1-13
- 39 Johnston JD, Scoffings D, Chung M. , et al. Computed tomography estimation of cochlear duct length can predict full insertion in cochlear implantation. Otol Neurotol 2016; 37 (03) 223-228
- 40 O'Connell BP, Hunter JB, Haynes DS. , et al. Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes. Laryngoscope 2017; 127 (10) 2352-2357
- 41 O'Connell BP, Cakir A, Hunter JB. , et al. Electrode location and angular insertion depth are predictors of audiologic outcomes in cochlear implantation. Otol Neurotol 2016; 37 (08) 1016-1023
- 42 Adunka O, Unkelbach MH, Mack M, Hambek M, Gstoettner W, Kiefer J. Cochlear implantation via the round window membrane minimizes trauma to cochlear structures: a histologically controlled insertion study. Acta Otolaryngol 2004; 124 (07) 807-812
- 43 Burghard A, Lenarz T, Kral A, Paasche G. Insertion site and sealing technique affect residual hearing and tissue formation after cochlear implantation. Hear Res 2014; 312: 21-27
- 44 Skarzynski H. Long-term results of partial deafness treatment. Cochlear Implants Int 2014; 15 (Suppl. 01) S21-S23
- 45 Havenith S, Lammers MJ, Tange RA. , et al. Hearing preservation surgery: cochleostomy or round window approach? A systematic review. Otol Neurotol 2013; 34 (04) 667-674
- 46 Eshraghi AA, Ahmed J, Krysiak E. , et al. Clinical, surgical, and electrical factors impacting residual hearing in cochlear implant surgery. Acta Otolaryngol 2017; 137 (04) 384-388
- 47 Wanna GB, O'Connell BP, Francis DO. , et al. Predictive factors for short- and long-term hearing preservation in cochlear implantation with conventional-length electrodes. Laryngoscope 2018; 128 (02) 482-489
- 48 Rajan GP, Kontorinis G, Kuthubutheen J. The effects of insertion speed on inner ear function during cochlear implantation: a comparison study. Audiol Neurootol 2013; 18 (01) 17-22
- 49 Carlson ML, Driscoll CL, Gifford RH. , et al. Implications of minimizing trauma during conventional cochlear implantation. Otol Neurotol 2011; 32 (06) 962-968
- 50 Causon A, Verschuur C, Newman TA. A retrospective analysis of the contribution of reported factors in cochlear implantation on hearing preservation outcomes. Otol Neurotol 2015; 36 (07) 1137-1145
- 51 Rajan GP, Kuthubutheen J, Hedne N, Krishnaswamy J. The role of preoperative, intratympanic glucocorticoids for hearing preservation in cochlear implantation: a prospective clinical study. Laryngoscope 2012; 122 (01) 190-195
- 52 Hargunani CA, Kempton JB, DeGagne JM, Trune DR. Intratympanic injection of dexamethasone: time course of inner ear distribution and conversion to its active form. Otol Neurotol 2006; 27 (04) 564-569
- 53 Vivero RJ, Joseph DE, Angeli S. , et al. Dexamethasone base conserves hearing from electrode trauma-induced hearing loss. Laryngoscope 2008; 118 (11) 2028-2035
- 54 Jolly C, Garnham C, Mirzadeh H. , et al. Electrode features for hearing preservation and drug delivery strategies. Adv Otorhinolaryngol 2010; 67: 28-42
- 55 Liu Y, Jolly C, Braun S. , et al. Effects of a dexamethasone-releasing implant on cochleae: a functional, morphological and pharmacokinetic study. Hear Res 2015; 327: 89-101
- 56 Liu Y, Jolly C, Braun S. , et al. In vitro and in vivo pharmacokinetic study of a dexamethasone-releasing silicone for cochlear implants. Eur Arch Otorhinolaryngol 2016; 273 (07) 1745-1753
- 57 Douchement D, Terranti A, Lamblin J. , et al. Dexamethasone eluting electrodes for cochlear implantation: effect on residual hearing. Cochlear Implants Int 2015; 16 (04) 195-200
- 58 Farhadi M, Jalessi M, Salehian P. , et al. Dexamethasone eluting cochlear implant: histological study in animal model. Cochlear Implants Int 2013; 14 (01) 45-50
- 59 Dolgin E. Sound medicine. Nat Med 2012; 18 (05) 642-645
- 60 Bas E, Bohorquez J, Goncalves S. , et al. Electrode array-eluted dexamethasone protects against electrode insertion trauma induced hearing and hair cell losses, damage to neural elements, increases in impedance and fibrosis: a dose response study. Hear Res 2016; 337: 12-24
- 61 Wilk M, Hessler R, Mugridge K. , et al. Impedance changes and fibrous tissue growth after cochlear implantation are correlated and can be reduced using a dexamethasone eluting electrode. PLoS One 2016; 11 (02) e0147552
- 62 Plontke SK, Götze G, Rahne T, Liebau A. Intracochlear drug delivery in combination with cochlear implants: current aspects. HNO 2017; 65 (Suppl. 01) 19-28
- 63 Van De Water TR, Abi Hachem RN, Dinh CT. , et al. Conservation of hearing and protection of auditory hair cells against trauma-induced losses by local dexamethasone therapy: molecular and genetic mechanisms. Cochlear Implants Int 2010; 11 (Suppl. 01) 42-55
- 64 Kannan K, Jain SK. Oxidative stress and apoptosis. Pathophysiology 2000; 7 (03) 153-163
- 65 Eastwood H, Pinder D, James D. , et al. Permanent and transient effects of locally delivered n-acetyl cysteine in a guinea pig model of cochlear implantation. Hear Res 2010; 259 (1-2): 24-30
- 66 Eshraghi AA. Prevention of cochlear implant electrode damage. Curr Opin Otolaryngol Head Neck Surg 2006; 14 (05) 323-328
- 67 Eshraghi AA, Wang J, Adil E. , et al. Blocking c-Jun-N-terminal kinase signaling can prevent hearing loss induced by both electrode insertion trauma and neomycin ototoxicity. Hear Res 2007; 226 (1-2): 168-177
- 68 Wise AK, Fallon JB, Neil AJ. , et al. Combining cell-based therapies and neural prostheses to promote neural survival. Neurotherapeutics 2011; 8 (04) 774-787
- 69 Kanzaki S, Stöver T, Kawamoto K. , et al. Glial cell line-derived neurotrophic factor and chronic electrical stimulation prevent VIII cranial nerve degeneration following denervation. J Comp Neurol 2002; 454 (03) 350-360
- 70 Richardson RT, Wise AK, Thompson BC. , et al. Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials 2009; 30 (13) 2614-2624
- 71 Roland Jr JT, Magardino TM, Go JT, Hillman DE. Effects of glycerin, hyaluronic acid, and hydroxypropyl methylcellulose on the spiral ganglion of the guinea pig cochlea. Ann Otol Rhinol Laryngol Suppl 1995; 166: 64-68
- 72 Khater A, El-Anwar MW. Methods of hearing preservation during cochlear implantation. Int Arch Otorhinolaryngol 2017; 21 (03) 297-301
- 73 Gantz BJ, Dunn C, Oleson J, Hansen M, Parkinson A, Turner C. Multicenter clinical trial of the Nucleus Hybrid S8 cochlear implant: final outcomes. Laryngoscope 2016; 126 (04) 962-973
- 74 Gantz BJ, Hansen MR, Turner CW, Oleson JJ, Reiss LA, Parkinson AJ. Hybrid 10 clinical trial: preliminary results. Audiol Neurootol 2009; 14 (Suppl. 01) 32-38
- 75 Lenarz T, James C, Cuda D. , et al. European multi-centre study of the Nucleus Hybrid L24 cochlear implant. Int J Audiol 2013; 52 (12) 838-848
- 76 Jurawitz MC, Büchner A, Harpel T. , et al. Hearing preservation outcomes with different cochlear implant electrodes: Nucleus® Hybrid™-L24 and Nucleus Freedom™ CI422. Audiol Neurootol 2014; 19 (05) 293-309
- 77 Helbig S, Adel Y, Rader T, Stöver T, Baumann U. Long-term hearing preservation outcomes after cochlear implantation for electric-acoustic stimulation. Otol Neurotol 2016; 37 (09) e353-e359
- 78 Fitzgerald MB, Sagi E, Jackson M. , et al. Reimplantation of hybrid cochlear implant users with a full-length electrode after loss of residual hearing. Otol Neurotol 2008; 29 (02) 168-173
- 79 Gantz BJ, Dunn CC, Oleson J, Hansen MR. Acoustic plus electric speech processing: long-term results. Laryngoscope 2018; 128 (02) 473-481
- 80 Yao WN, Turner CW, Gantz BJ. Stability of low-frequency residual hearing in patients who are candidates for combined acoustic plus electric hearing. J Speech Lang Hear Res 2006; 49 (05) 1085-1090
- 81 Roland Jr JT, Gantz BJ, Waltzman SB, Parkinson AJ. Long-term outcomes of cochlear implantation in patients with high-frequency hearing loss. Laryngoscope 2018; Epub ahead of print
- 82 Pillsbury III HC, Dillon MT, Buchman CA. , et al. Multicenter US clinical trial with an electric-acoustic stimulation (EAS) system in adults: final outcomes. Otol Neurotol 2018; 39 (03) 299-305
- 83 Helbig S, Van de Heyning P, Kiefer J. , et al. Combined electric acoustic stimulation with the PULSARCI(100) implant system using the FLEX(EAS) electrode array. Acta Otolaryngol 2011; 131 (06) 585-595
- 84 Roland Jr JT, Gantz BJ, Waltzman SB, Parkinson AJ. ; Multicenter Clinical Trial Group. United States multicenter clinical trial of the cochlear nucleus hybrid implant system. Laryngoscope 2016; 126 (01) 175-181
- 85 Mady LJ, Sukato DC, Fruit J. , et al. Hearing preservation: does electrode choice matter?. Otolaryngol Head Neck Surg 2017; 157 (05) 837-847
- 86 Mertens G, Punte AK, Cochet E, De Bodt M, Van de Heyning P. Long-term follow-up of hearing preservation in electric-acoustic stimulation patients. Otol Neurotol 2014; 35 (10) 1765-1772
- 87 Moteki H, Nishio SY, Miyagawa M, Tsukada K, Iwasaki S, Usami SI. Long-term results of hearing preservation cochlear implant surgery in patients with residual low frequency hearing. Acta Otolaryngol 2017; 137 (05) 516-521
- 88 Gstoettner WK, van de Heyning P, O'Connor AF. , et al. Electric acoustic stimulation of the auditory system: results of a multi-centre investigation. Acta Otolaryngol 2008; 128 (09) 968-975
- 89 Turner CW, Gantz BJ, Vidal C, Behrens A, Henry BA. Speech recognition in noise for cochlear implant listeners: benefits of residual acoustic hearing. J Acoust Soc Am 2004; 115 (04) 1729-1735
- 90 Turner CW, Reiss LAJ, Gantz BJ. Combined acoustic and electric hearing: preserving residual acoustic hearing. Hear Res 2008; 242 (1-2): 164-171
- 91 Gantz BJ, Turner C, Gfeller KE, Lowder MW. Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing. Laryngoscope 2005; 115 (05) 796-802
- 92 Kiefer J, Pok M, Adunka O. , et al. Combined electric and acoustic stimulation of the auditory system: results of a clinical study. Audiol Neurootol 2005; 10 (03) 134-144
- 93 Adunka OF, Dillon MT, Adunka MC, King ER, Pillsbury HC, Buchman CA. Hearing preservation and speech perception outcomes with electric-acoustic stimulation after 12 months of listening experience. Laryngoscope 2013; 123 (10) 2509-2515
- 94 Gfeller KE, Olszewski C, Turner C, Gantz B, Oleson J. Music perception with cochlear implants and residual hearing. Audiol Neurootol 2006; 11 (Suppl. 01) 12-15
- 95 Gfeller K, Turner C, Oleson J. , et al. Accuracy of cochlear implant recipients on pitch perception, melody recognition, and speech reception in noise. Ear Hear 2007; 28 (03) 412-423
- 96 Dorman MF, Gifford RH. Combining acoustic and electric stimulation in the service of speech recognition. Int J Audiol 2010; 49 (12) 912-919
- 97 Dunn CC, Perreau A, Gantz B, Tyler RS. Benefits of localization and speech perception with multiple noise sources in listeners with a short-electrode cochlear implant. J Am Acad Audiol 2010; 21 (01) 44-51
- 98 Ching TY, Incerti P, Hill M. Binaural benefits for adults who use hearing aids and cochlear implants in opposite ears. Ear Hear 2004; 25 (01) 9-21
- 99 Kong YY, Stickney GS, Zeng FG. Speech and melody recognition in binaurally combined acoustic and electric hearing. J Acoust Soc Am 2005; 117 (3, Pt 1): 1351-1361
- 100 van Hoesel RJ. Contrasting benefits from contralateral implants and hearing aids in cochlear implant users. Hear Res 2012; 288 (1-2): 100-113
- 101 Cherry C. Some experiments on the recognition of speech, with one and two ears. J Acoust Soc Am 1953; 26: 554-559
- 102 Yost WA, Dye Jr RH, Sheft S. A simulated “cocktail party” with up to three sound sources. Percept Psychophys 1996; 58 (07) 1026-1036
- 103 Hirsh I. The influence of interaural phase on interaural summation and inhibition. J Acoust Soc Am 1948; 20 (04) 536-544
- 104 Zhang T, Dorman MF, Spahr AJ. Information from the voice fundamental frequency (F0) region accounts for the majority of the benefit when acoustic stimulation is added to electric stimulation. Ear Hear 2010; 31 (01) 63-69
- 105 Loiselle LH, Dorman MF, Yost WA, Cook SJ, Gifford RH. Using ILD or ITD cues for sound source localization and speech understanding in a complex listening environment by listeners with bilateral and with hearing-preservation cochlear implants. J Speech Lang Hear Res 2016; 59 (04) 810-818
- 106 Rader T, Fastl H, Baumann U. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field. Ear Hear 2013; 34 (03) 324-332
- 107 Incerti PV, Ching TY, Cowan R. A systematic review of electric-acoustic stimulation: device fitting ranges, outcomes, and clinical fitting practices. Trends Amplif 2013; 17 (01) 3-26
- 108 Dillon MT, Buss E, Adunka OF, Buchman CA, Pillsbury HC. Influence of test condition on speech perception with electric-acoustic stimulation. Am J Audiol 2015; 24 (04) 520-528
- 109 Gifford RH, Dorman MF, Skarzynski H. , et al. Cochlear implantation with hearing preservation yields significant benefit for speech recognition in complex listening environments. Ear Hear 2013; 34 (04) 413-425
- 110 Wei CG, Cao K, Zeng FG. Mandarin tone recognition in cochlear-implant subjects. Hear Res 2004; 197 (1-2): 87-95
- 111 Luo X, Chang YP, Lin CY, Chang RY. Contribution of bimodal hearing to lexical tone normalization in Mandarin-speaking cochlear implant users. Hear Res 2014; 312: 1-8
- 112 Karsten SA, Turner CW, Brown CJ, Jeon EK, Abbas PJ, Gantz BJ. Optimizing the combination of acoustic and electric hearing in the implanted ear. Ear Hear 2013; 34 (02) 142-150
- 113 Nopp P, Polak M. From electric acoustic stimulation to improved sound coding in cochlear implants. Adv Otorhinolaryngol 2010; 67: 88-95
- 114 Simpson A, McDermott HJ, Dowell RC, Sucher C, Briggs RJ. Comparison of two frequency-to-electrode maps for acoustic-electric stimulation. Int J Audiol 2009; 48 (02) 63-73
- 115 Vermeire K, Anderson I, Flynn M, Van de Heyning P. The influence of different speech processor and hearing aid settings on speech perception outcomes in electric acoustic stimulation patients. Ear Hear 2008; 29 (01) 76-86
- 116 Büchner A, Illg A, Majdani O, Lenarz T. Investigation of the effect of cochlear implant electrode length on speech comprehension in quiet and noise compared with the results with users of electro-acoustic-stimulation, a retrospective analysis. PLoS One 2017; 12 (05) e0174900
- 117 Rader T, Adel Y, Fastl H, Baumann U. Speech perception with combined electric-acoustic stimulation: a simulation and model comparison. Ear Hear 2015; 36 (06) e314-e325
- 118 Gifford RH, Davis TJ, Sunderhaus LW. , et al. Combined electric and acoustic stimulation with hearing preservation: effect of cochlear implant low-frequency cutoff on speech understanding and perceived listening difficulty. Ear Hear 2017; 38 (05) 539-553
- 119 Baumann U, Rader T, Helbig S, Bahmer A. Pitch matching psychometrics in electric acoustic stimulation. Ear Hear 2011; 32 (05) 656-662
- 120 McDermott H, Varsavsky A. Better fitting of cochlear implants: modeling loudness for acoustic and electric stimuli. J Neural Eng 2009; 6 (06) 065007
- 121 Reiss LA, Turner CW, Karsten SA, Gantz BJ. Plasticity in human pitch perception induced by tonotopically mismatched electro-acoustic stimulation. Neuroscience 2014; 256 (256) 43-52
- 122 Reiss LA, Ito RA, Eggleston JL, Wozny DR. Abnormal binaural spectral integration in cochlear implant users. J Assoc Res Otolaryngol 2014; 15 (02) 235-248
- 123 Vermeire K, Punte AK, Van de Heyning P. Better speech recognition in noise with the fine structure processing coding strategy. ORL J Otorhinolaryngol Relat Spec 2010; 72 (06) 305-311
- 124 Müller J, Brill S, Hagen R. , et al. Clinical trial results with the MED-EL fine structure processing coding strategy in experienced cochlear implant users. ORL J Otorhinolaryngol Relat Spec 2012; 74 (04) 185-198
- 125 Choudhury B, Fitzpatrick DC, Buchman CA. , et al. Intraoperative round window recordings to acoustic stimuli from cochlear implant patients. Otol Neurotol 2012; 33 (09) 1507-1515
- 126 Radeloff A, Shehata-Dieler W, Scherzed A. , et al. Intraoperative monitoring using cochlear microphonics in cochlear implant patients with residual hearing. Otol Neurotol 2012; 33 (03) 348-354
- 127 McClellan JH, Formeister EJ, Merwin III WH. , et al. Round window electrocochleography and speech perception outcomes in adult cochlear implant subjects: comparison with audiometric and biographical information. Otol Neurotol 2014; 35 (09) e245-e252
- 128 Adunka OF, Giardina CK, Formeister EJ, Choudhury B, Buchman CA, Fitzpatrick DC. Round window electrocochleography before and after cochlear implant electrode insertion. Laryngoscope 2016; 126 (05) 1193-1200