Subscribe to RSS
DOI: 10.1055/s-0038-1673364
The Apoptotic, Angiogenic and Cell Proliferation Genes CD63, S100A6 e GNB2L1 are Altered in Patients with Endometriosis
Os genes apoptóticos, angiogênicos e de proliferação celular CD63, S100A6 e GNB2L1 estão alterados em pacientes com endometriosePublication History
03 February 2018
21 June 2018
Publication Date:
23 October 2018 (online)
Abstract
Objective The aim of the present study was to analyze the expression of the CD63, S100A6, and GNB2L1genes, which participate in mechanisms related to the complex pathophysiology of endometriosis.
Methods A case-control study was conducted with 40 women who were diagnosed with endometriosis, and 15 fertile and healthy women. Paired samples of eutopic endometrium and endometriotic lesions (peritoneal and ovarian endometriotic implants) were obtained from the women with endometriosis in the proliferative (n = 20) or secretory phases (n = 20) of the menstrual cycle. As controls, paired endometrial biopsy samples were collected from the healthy women in the proliferative (n = 15) and secretory (n = 15) phases of the same menstrual cycle. We analyzed the expression levels of the CD63, S100A6, and GNB2L1 genes by real-time polymerase chain reaction.
Results An increase in CD63, S100A6, and GNB2L1 gene transcript levels was observed in the ectopic implants compared with the eutopic endometrium of the women with and without endometriosis, regardless of the phase of the menstrual cycle.
Conclusion These findings suggest that the CD63, S100A6, and GNB2L1 genes may be involved in the pathogenesis of endometriosis, since they participate in mechanisms such as inhibition of apoptosis, angiogenesis and cell proliferation, which lead to the loss of cell homeostasis in the ectopic endometrium, thus contributing to the implantation and survival of the tissue in the extrauterine environment.
Resumo
Objetivo O objetivo do presente estudo foi analisar a expressão dos genes CD63, S100A6 e GNB2L1, que participam em mecanismos relacionados à complexa fisiopatologia da endometriose.
Métodos Um estudo caso-controle foi realizado com 40 mulheres diagnosticadas com endometriose e 15 mulheres férteis e saudáveis. Amostras pareadas de endométrio eutópico e de lesões endometrióticas (implantes endometrióticos peritoneais e ovarianos) foram obtidas de mulheres com endometriose nas fases proliferativa (n = 20) ou secretora (n = 20) do ciclo menstrual. Como controle, amostras pareadas de biópsia endometrial foram coletadas de mulheres saudáveis nas fases proliferativa (n = 15) e secretora (n = 15) no mesmo ciclo menstrual. Foram analisados os níveis de expressão dos genes CD63, S100A6 e GNB2L1 por reação em cadeia da polimerase em tempo real.
Resultados Foi observado um aumento nos níveis de transcritos dos genes CD63, S100A6 e GNB2L1 em implantes ectópicos quando comparado ao endométrio eutópico de mulheres com e sem endometriose, independente da fase do ciclo menstrual.
Conclusão Estes achados sugerem que os genes CD63, S100A6 e GNB2L1 podem estar envolvidos na patogênese da endometriose, pois participam de mecanismos como inibição de apoptose, angiogênese e proliferação celular, os quais levam à perda da homeostase celular no endométrio ectópico e, portanto, contribuem para o implante e a sobrevivência do tecido no ambiente extrauterino.
-
References
- 1 Yang WC, Chen HW, Au HK. , et al. Serum and endometrial markers. Best Pract Res Clin Obstet Gynaecol 2004; 18 (02) 305-318 Doi: 10.1016/j.bpobgyn.2004.03.003
- 2 Nap AW, Groothuis PG, Demir AY, Evers JL, Dunselman GA. Pathogenesis of endometriosis. Best Pract Res Clin Obstet Gynaecol 2004; 18 (02) 233-244 Doi: 10.1016/j.bpobgyn.2004.01.005
- 3 Meola J, Rosa e Silva JC, Dentillo DB. , et al. Differentially expressed genes in eutopic and ectopic endometrium of women with endometriosis. Fertil Steril 2010; 93 (06) 1750-1773 Doi: 10.1016/j.fertnstert.2008.12.058
- 4 Dentillo DB, Meola J, Rosa e Silva JC. , et al. Deregulation of LOXL1 and HTRA1 gene expression in endometriosis. Reprod Sci 2010; 17 (11) 1016-1023 Doi: 10.1177/1933719110377662
- 5 Honda H, Barrueto FF, Gogusev J, Im DD, Morin PJ. Serial analysis of gene expression reveals differential expression between endometriosis and normal endometrium. Possible roles for AXL and SHC1 in the pathogenesis of endometriosis. Reprod Biol Endocrinol 2008; 6: 59 Doi: 10.1186/1477-7827-6-59
- 6 Filigheddu N, Gregnanin I, Porporato PE. , et al. Differential expression of microRNAs between eutopic and ectopic endometrium in ovarian endometriosis. J Biomed Biotechnol 2010; 2010: 369549
- 7 Hu WP, Tay SK, Zhao Y. Endometriosis-specific genes identified by real-time reverse transcription-polymerase chain reaction expression profiling of endometriosis versus autologous uterine endometrium. J Clin Endocrinol Metab 2006; 91 (01) 228-238 Doi: 10.1210/jc.2004-1594
- 8 Wu Y, Kajdacsy-Balla A, Strawn E. , et al. Transcriptional characterizations of differences between eutopic and ectopic endometrium. Endocrinology 2006; 147 (01) 232-246 Doi: 10.1210/en.2005-0426
- 9 Eyster KM, Klinkova O, Kennedy V, Hansen KA. Whole genome deoxyribonucleic acid microarray analysis of gene expression in ectopic versus eutopic endometrium. Fertil Steril 2007; 88 (06) 1505-1533 Doi: 10.1016/j.fertnstert.2007.01.056
- 10 Hull ML, Escareno CR, Godsland JM. , et al. Endometrial-peritoneal interactions during endometriotic lesion establishment. Am J Pathol 2008; 173 (03) 700-715 Doi: 10.2353/ajpath.2008.071128
- 11 Revised American Society for Reproductive Medicine classification of endometriosis: 1996. Fertil Steril 1997; 67 (05) 817-821 Doi: 10.1016/S0015-0282(97)81391-X
- 12 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25 (04) 402-408 Doi: 10.1006/meth.2001.1262
- 13 Goodsaid FM, Smith RJ, Rosenblum IY. Quantitative PCR deconstruction of discrepancies between results reported by different hybridization platforms. Environ Health Perspect 2004; 112 (04) 456-460
- 14 Fujii EY, Nakayama M, Nakagawa A. Concentrations of receptor for advanced glycation end products, VEGF and CML in plasma, follicular fluid, and peritoneal fluid in women with and without endometriosis. Reprod Sci 2008; 15 (10) 1066-1074 Doi: 10.1177/1933719108323445
- 15 Hotta H, Ross AH, Huebner K. , et al. Molecular cloning and characterization of an antigen associated with early stages of melanoma tumor progression. Cancer Res 1988; 48 (11) 2955-2962
- 16 Berditchevski F, Zutter MM, Hemler ME. Characterization of novel complexes on the cell surface between integrins and proteins with 4 transmembrane domains (TM4 proteins). Mol Biol Cell 1996; 7 (02) 193-207 Doi: 10.1091/mbc.7.2.193
- 17 Radford KJ, Thorne RF, Hersey P. CD63 associates with transmembrane 4 superfamily members, CD9 and CD81, and with beta 1 integrins in human melanoma. Biochem Biophys Res Commun 1996; 222 (01) 13-18 Doi: 10.1006/bbrc.1996.0690
- 18 Hammond C, Denzin LK, Pan M, Griffith JM, Geuze HJ, Cresswell P. The tetraspan protein CD82 is a resident of MHC class II compartments where it associates with HLA-DR, -DM, and -DO molecules. J Immunol 1998; 161 (07) 3282-3291
- 19 Kitani S, Berenstein E, Mergenhagen S, Tempst P, Siraganian RP. A cell surface glycoprotein of rat basophilic leukemia cells close to the high affinity IgE receptor (Fc epsilon RI). Similarity to human melanoma differentiation antigen ME491. J Biol Chem 1991; 266 (03) 1903-1909
- 20 Levy S, Shoham T. The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol 2005; 5 (02) 136-148 Doi: 10.1038/nri1548
- 21 Yoshida T, Kawano Y, Sato K. , et al. A CD63 mutant inhibits T-cell tropic human immunodeficiency virus type 1 entry by disrupting CXCR4 trafficking to the plasma membrane. Traffic 2008; 9 (04) 540-558 Doi: 10.1111/j.1600-0854.2008.00700.x
- 22 Skubitz KM, Campbell KD, Iida J, Skubitz AP. CD63 associates with tyrosine kinase activity and CD11/CD18, and transmits an activation signal in neutrophils. J Immunol 1996; 157 (08) 3617-3626
- 23 Hirst J, Bright NA, Rous B, Robinson MS. Characterization of a fourth adaptor-related protein complex. Mol Biol Cell 1999; 10 (08) 2787-2802 Doi: 10.1091/mbc.10.8.2787
- 24 Lekishvili T, Fromm E, Mujoomdar M, Berditchevski F. The tumour-associated antigen L6 (L6-Ag) is recruited to the tetraspanin-enriched microdomains: implication for tumour cell motility. J Cell Sci 2008; 121 (Pt 5): 685-694 Doi: 10.1242/jcs.020347
- 25 Latysheva N, Muratov G, Rajesh S. , et al. Syntenin-1 is a new component of tetraspanin-enriched microdomains: mechanisms and consequences of the interaction of syntenin-1 with CD63. Mol Cell Biol 2006; 26 (20) 7707-7718 Doi: 10.1128/MCB.00849-06
- 26 Jung KK, Liu XW, Chirco R, Fridman R, Kim HR. Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. EMBO J 2006; 25 (17) 3934-3942 Doi: 10.1038/sj.emboj.7601281
- 27 Schröder HM, Hoffmann SC, Hecker M, Korff T, Ludwig T. The tetraspanin network modulates MT1-MMP cell surface trafficking. Int J Biochem Cell Biol 2013; 45 (06) 1133-1144 Doi: 10.1016/j.biocel.2013.02.020
- 28 Toricelli M, Melo FH, Peres GB, Silva DC, Jasiulionis MG. Timp1 interacts with beta-1 integrin and CD63 along melanoma genesis and confers anoikis resistance by activating PI3-K signaling pathway independently of Akt phosphorylation. Mol Cancer 2013; 12: 22 Doi: 10.1186/1476-4598-12-22
- 29 Jung YS, Liu XW, Chirco R, Warner RB, Fridman R, Kim HR. TIMP-1 induces an EMT-like phenotypic conversion in MDCK cells independent of its MMP-inhibitory domain. PLoS One 2012; 7 (06) e38773 Doi: 10.1371/journal.pone.0038773
- 30 Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D. Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci U S A 1994; 91 (03) 839-843 Doi: 10.1073/pnas.91.3.839
- 31 Berns H, Humar R, Hengerer B, Kiefer FN, Battegay EJ. RACK1 is up-regulated in angiogenesis and human carcinomas. FASEB J 2000; 14 (15) 2549-2558 Doi: 10.1096/fj.99-1038com
- 32 Chang BY, Harte RA, Cartwright CA. RACK1: a novel substrate for the Src protein-tyrosine kinase. Oncogene 2002; 21 (50) 7619-7629 Doi: 10.1038/sj.onc.1206002
- 33 Cox EA, Bennin D, Doan AT, O'Toole T, Huttenlocher A. RACK1 regulates integrin-mediated adhesion, protrusion, and chemotactic cell migration via its Src-binding site. Mol Biol Cell 2003; 14 (02) 658-669 Doi: 10.1091/mbc.e02-03-0142
- 34 Mourtada-Maarabouni M, Kirkham L, Farzaneh F, Williams GT. Functional expression cloning reveals a central role for the receptor for activated protein kinase C 1 (RACK1) in T cell apoptosis. J Leukoc Biol 2005; 78 (02) 503-514 Doi: 10.1189/jlb.0205070
- 35 Viviani B, Corsini E, Binaglia M, Lucchi L, Galli CL, Marinovich M. The anti-inflammatory activity of estrogen in glial cells is regulated by the PKC-anchoring protein RACK-1. J Neurochem 2002; 83 (05) 1180-1187
- 36 Doan AT, Huttenlocher A. RACK1 regulates Src activity and modulates paxillin dynamics during cell migration. Exp Cell Res 2007; 313 (12) 2667-2679 Doi: 10.1016/j.yexcr.2007.05.013
- 37 Chang BY, Conroy KB, Machleder EM, Cartwright CA. RACK1, a receptor for activated C kinase and a homolog of the beta subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Mol Cell Biol 1998; 18 (06) 3245-3256 Doi: 10.1128/MCB.18.6.3245
- 38 Mamidipudi V, Chang BY, Harte RA, Lee KC, Cartwright CA. RACK1 inhibits the serum- and anchorage-independent growth of v-Src transformed cells. FEBS Lett 2004; 567 (2-3): 321-326 Doi: 10.1016/j.febslet.2004.03.125
- 39 Kiely PA, O'Gorman D, Luong K, Ron D, O'Connor R. Insulin-like growth factor I controls a mutually exclusive association of RACK1 with protein phosphatase 2A and beta1 integrin to promote cell migration. Mol Cell Biol 2006; 26 (11) 4041-4051 Doi: 10.1128/MCB.01868-05
- 40 Zhang W, Cheng GZ, Gong J. , et al. RACK1 and CIS mediate the degradation of BimEL in cancer cells. J Biol Chem 2008; 283 (24) 16416-16426 Doi: 10.1074/jbc.M802360200
- 41 Saito A, Fujii G, Sato Y. , et al. Detection of genes expressed in primary colon cancers by in situ hybridisation: overexpression of RACK 1. Mol Pathol 2002; 55 (01) 34-39
- 42 Egidy G, Julé S, Bossé P. , et al. Transcription analysis in the MeLiM swine model identifies RACK1 as a potential marker of malignancy for human melanocytic proliferation. Mol Cancer 2008; 7: 34 Doi: 10.1186/1476-4598-7-34
- 43 Shipitsin M, Campbell LL, Argani P. , et al. Molecular definition of breast tumor heterogeneity. Cancer Cell 2007; 11 (03) 259-273 Doi: 10.1016/j.ccr.2007.01.013
- 44 Wang Z, Zhang B, Jiang L. , et al. RACK1, an excellent predictor for poor clinical outcome in oral squamous carcinoma, similar to Ki67. Eur J Cancer 2009; 45 (03) 490-496 Doi: 10.1016/j.ejca.2008.11.012
- 45 Sastry M, Ketchem RR, Crescenzi O. , et al. The three-dimensional structure of Ca(2+)-bound calcyclin: implications for Ca(2+)-signal transduction by S100 proteins. Structure 1998; 6 (02) 223-231 Doi: 10.1016/S0969-2126(98)00023-9
- 46 Hwang R, Lee EJ, Kim MH. , et al. Calcyclin, a Ca2+ ion-binding protein, contributes to the anabolic effects of simvastatin on bone. J Biol Chem 2004; 279 (20) 21239-21247 10.1074/jbc.M312771200
- 47 Kuźnicki J, Filipek A. Purification and properties of a novel Ca2+-binding protein (10.5 kDa) from Ehrlich-ascites-tumour cells. Biochem J 1987; 247 (03) 663-667 Doi: 10.1042/bj2470663
- 48 Filipek A, Zasada A, Wojda U, Makuch R, Dabrowska R. Characterization of chicken gizzard calcyclin and examination of its interaction with caldesmon. Comp Biochem Physiol B Biochem Mol Biol 1996; 113 (04) 745-752 Doi: 10.1016/0305-0491(95)02095-0
- 49 Golitsina NL, Kordowska J, Wang CL, Lehrer SS. Ca2+-dependent binding of calcyclin to muscle tropomyosin. Biochem Biophys Res Commun 1996; 220 (02) 360-365 Doi: 10.1006/bbrc.1996.0410
- 50 Leśniak W, Słomnicki ŁP, Filipek A. S100A6 - new facts and features. Biochem Biophys Res Commun 2009; 390 (04) 1087-1092 Doi: 10.1016/j.bbrc.2009.10.150
- 51 Hirschhorn RR, Aller P, Yuan ZA, Gibson CW, Baserga R. Cell-cycle-specific cDNAs from mammalian cells temperature sensitive for growth. Proc Natl Acad Sci U S A 1984; 81 (19) 6004-6008
- 52 Liu Z, Zhang X, Chen M, Cao Q, Huang D. Effect of S100A6 over-expression on β-catenin in endometriosis. J Obstet Gynaecol Res 2015; 41 (09) 1457-1462 Doi: 10.1111/jog.12729
- 53 Matsuzaki S, Darcha C, Maleysson E, Canis M, Mage G. Impaired down-regulation of E-cadherin and beta-catenin protein expression in endometrial epithelial cells in the mid-secretory endometrium of infertile patients with endometriosis. J Clin Endocrinol Metab 2010; 95 (07) 3437-3445 Doi: 10.1210/jc.2009-2713
- 54 Zhang X, Liu Z, Chen M, Cao Q, Huang D. Effects of S100A6 gene silencing on the biological features of eutopic endometrial stromal cells and β‑catenin expression. Mol Med Rep 2017; 15 (03) 1279-1285 Doi: 10.3892/mmr.2017.6105
- 55 Słomnicki ŁP, Nawrot B, Leśniak W. S100A6 binds p53 and affects its activity. Int J Biochem Cell Biol 2009; 41 (04) 784-790 Doi: 10.1016/j.biocel.2008.08.007
- 56 Tsoporis JN, Izhar S, Parker TG. Expression of S100A6 in cardiac myocytes limits apoptosis induced by tumor necrosis factor-alpha. J Biol Chem 2008; 283 (44) 30174-30183 Doi: 10.1074/jbc.M805318200
- 57 Leong S, Christopherson RI, Baxter RC. Profiling of apoptotic changes in human breast cancer cells using SELDI-TOF mass spectrometry. Cell Physiol Biochem 2007; 20 (05) 579-590 Doi: 10.1159/000107541
- 58 Nedjadi T, Kitteringham N, Campbell F. , et al. S100A6 binds to annexin 2 in pancreatic cancer cells and promotes pancreatic cancer cell motility. Br J Cancer 2009; 101 (07) 1145-1154 Doi: 10.1038/sj.bjc.6605289
- 59 Luo X, Sharff KA, Chen J, He TC, Luu HH. S100A6 expression and function in human osteosarcoma. Clin Orthop Relat Res 2008; 466 (09) 2060-2070 Doi: 10.1007/s11999-008-0361-x
- 60 Ohuchida K, Mizumoto K, Ishikawa N. , et al. The role of S100A6 in pancreatic cancer development and its clinical implication as a diagnostic marker and therapeutic target. Clin Cancer Res 2005; 11 (21) 7785-7793 Doi: 10.1158/1078-0432.CCR-05-0714
- 61 Słomnicki LP, Leśniak W. S100A6 (calcyclin) deficiency induces senescence-like changes in cell cycle, morphology and functional characteristics of mouse NIH 3T3 fibroblasts. J Cell Biochem 2010; 109 (03) 576-584 Doi: 10.1002/jcb.22434
- 62 Okada H, Sanezumi M, Nakajima T, Okada S, Yasuda K, Kanzaki H. Rapid down-regulation of CD63 transcription by progesterone in human endometrial stromal cells. Mol Hum Reprod 1999; 5 (06) 554-558 Doi: 10.1093/molehr/5.6.554
- 63 Brar AK, Handwerger S, Kessler CA, Aronow BJ. Gene induction and categorical reprogramming during in vitro human endometrial fibroblast decidualization. Physiol Genomics 2001; 7 (02) 135-148 Doi: 10.1152/physiolgenomics.00061.2001
- 64 Tong XM, Lin XN, Song T, Liu L, Zhang SY. Calcium-binding protein S100P is highly expressed during the implantation window in human endometrium. Fertil Steril 2010; 94 (04) 1510-1518 Doi: 10.1016/j.fertnstert.2009.07.1667