Osteologie 2018; 27(03): 129-134
DOI: 10.1055/s-0038-1673534
Orthopädische Osteologie – Orthopedic Osteology
Georg Thieme Verlag KG Stuttgart · New York

The Role of Vitamin D and the Vitamin D Receptor in Bone Oncology

Die Bedeutung von Vitamin D und des Vitamin D Rezeptors in der Osteoonkologie
K. Horas
1   Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University, Wuerzburg, Germany
2   BG Trauma Hospital, Department of Trauma Surgery, Frankfurt am Main, Germany
,
B. M. Holzapfel
3   Department of Orthopaedics, Koenig-Ludwig-Haus, Julius-Maximilians-University, Wuerzburg, Germany
4   Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
,
F. Jakob
1   Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University, Wuerzburg, Germany
,
A. A. Kurth
5   Klinik für Orthopädie und Unfallchirurgie, Kemperhof Koblenz, Gemeinschaftsklinikum Mittelrhein
,
G. Maier
6   Department of Orthopaedic Surgery, Pius-Hospital, Carl-von-Ossietzky-University, Oldenburg, Germany
› Author Affiliations
This work has been supported in part by the following grants: German Research Foundation (DFG) (K. H.; HO 5109/2–1 and HO 5109/2–2)
Further Information

Publication History

received: 28 May 2018

accepted: 06 June 2018

Publication Date:
21 September 2018 (online)

Summary

Vitamin D deficiency is a global health problem of enormous and increasing dimensions. In the past decades, numerous studies have centered on the role of vitamin D in the pathogenesis and course of many diseases including several types of cancer. Indeed, vitamin D has been widely acknowledged to be involved in the regulation of cell proliferation, differentiation and apoptosis in numerous cancer cells. While the full range of molecular mechanisms involveld in cancer cell growth and progression remains to be elucidated, recent research has deepened our understanding of the processes that may be affected by vitamin D or vitamin D deficiency.

In this review, we consider the properties of bone that enable cancer cells to grow and thrive within the skeleton, and the role of vitamin D and the vitamin D receptor in the process of primary and secondary cancer growth in bone.

Zusammenfassung

Vitamin-D-Mangelerscheinungen treten in der Bevölkerung immer häufiger auf und stellen ein weltweites Gesundheitsproblem von enormem Ausmaß dar. In den vergangenen Jahren hat das Interesse an Vitamin D deutlich zugenommen. So haben sich zahlreiche Studien mit dem Einfluss von Vitamin D auf verschiedenste Erkrankungen befasst. Allgemein werden Vitamin D gesundheitsförderliche Wirkungen bis hin zur Wachstumshemmung diverser Krebserkrankungen zugeschrieben, wobei es nur wenige prospektive Daten zum Einfluss von Vitamin D auf die Entstehung und den Verlauf maligner Erkrankungen gibt. Mittlerweile ist jedoch hinreichend bekannt, dass Vitamin D direkten und indirekten Einfluss auf die Regulation von Zellproliferation, Zelldifferenzierung und Apoptose von Krebszellen nimmt. Die genauen Mechanismen, die das Wachstum von Krebserkrankungen steuern und welche Rolle hierbei möglicherweise Vitamin D einnimmt, sind bislang nicht gänzlich verstanden. Dennoch konnten zahlreiche kürzlich veröffentliche Studien neue Erkenntnisse erbringen.

Ziel dieses Artikels ist es zum Einen, eine Übersicht über die Eigenschaften zu geben, die es Tumorzellen ermöglichen, im knöchernen Skelett und seiner Mikroumgebung zu überleben und zu wachsen. Ferner soll hierbei die Rolle von Vitamin D und des Vitamin-D-Rezeptors bei dem Wachstum von primären und sekundärern Knochentumoren beleuchtet werden.

 
  • References

  • 1 Aggarwal A, Feldman D, Feldman BJ. Identification of tumor-autonomous and indirect effects of vitamin D action that inhibit breast cancer growth and tumor progression. The Journal of steroid biochemistry and molecular biology 2018; 177: 155-158.
  • 2 Holick MF. Vitamin D deficiency. The New England journal of medicine 2007; 357 (03) 266-281.
  • 3 Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiological reviews 2016; 96 (01) 365-408.
  • 4 Jones KS, Schoenmakers I, Bluck LJ, Ding S, Prentice A. Plasma appearance and disappearance of an oral dose of 25-hydroxyvitamin D2 in healthy adults. The British journal of nutrition 2012; 107 (08) 1128-1137.
  • 5 Horas K, Fraissler L, Maier G, Jakob F, Seefried L, Konrads C. et al. High Prevalence of Vitamin D Deficiency in Patients With Bone Marrow Edema Syndrome of the Foot and Ankle. Foot & ankle international. 2017. 1071100717697427.
  • 6 Maier GS, Jakob P, Horas K, Roth KE, Kurth AA, Maus U. Vitamin D deficiency in orthopaedic patients: a single center analysis. Acta orthopaedica Belgica 2013; 79 (05) 587-591.
  • 7 Bischoff-Ferrari HA. Vitamin-D-Supplementation. Osteologie/Osteology 2011; 20 (04) 328-332.
  • 8 Maier GS, Horas K, Seeger JB, Roth KE, Kurth AA, Maus U. Vitamin D insufficiency in the elderly orthopaedic patient: an epidemic phenomenon. International orthopaedics. 2014 Sep 10.
  • 9 Peng X, Hawthorne M, Vaishnav A, St-Arnaud R, Mehta RG. 25-Hydroxyvitamin D3 is a natural chemopreventive agent against carcinogen induced precancerous lesions in mouse mammary gland organ culture. Breast Cancer Res Treat 2009; 113 (01) 31-41.
  • 10 Townsend K, Banwell CM, Guy M, Colston KW, Mansi JL, Stewart PM. et al. Autocrine metabolism of vitamin D in normal and malignant breast tissue. Clin Cancer Res 2005; 11 (09) 3579-3586.
  • 11 Cross HS, Lipkin M, Kallay E. Nutrients regulate the colonic vitamin D system in mice: relevance for human colon malignancy. The Journal of nutrition 2006; 136 (03) 561-564.
  • 12 Pendas-Franco N, Gonzalez-Sancho JM, Suarez Y, Aguilera O, Steinmeyer A, Gamallo C. et al. Vitamin D regulates the phenotype of human breast cancer cells. Differentiation 2007; 75 (03) 193-207.
  • 13 Rohan JN, Weigel NL. 1Alpha,25-dihydroxyvitamin D3 reduces c-Myc expression, inhibiting proliferation and causing G1 accumulation in C4–2 prostate cancer cells. Endocrinology 2009; 150 (05) 2046-2054.
  • 14 Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nature reviews Cancer 2014; 14 (05) 342-357.
  • 15 Ebert R, Schutze N, Adamski J, Jakob F. Vitamin D signaling is modulated on multiple levels in health and disease. Molecular and cellular endocrinology 2006; 248 (1–2): 149-159.
  • 16 Klotz B, Mentrup B, Regensburger M, Zeck S, Schneidereit J, Schupp N. et al. 1,25-dihydroxyvitamin D3 treatment delays cellular aging in human mesenchymal stem cells while maintaining their multipotent capacity. PloS one 2012; 07 (01) e29959.
  • 17 Horas K, Maier G, Jakob F, Maus U, Kurth A, Jakuscheit A. et al. High Prevalence of Vitamin D Deficiency in Patients with Bone Tumors. Cancer investigation 2017; Aug 11: 1-7.
  • 18 Mentrup B, Ebert R, Walther JN, Klotz B, Jakob F. Molekularbiologische Aspekte und Signalwege von Vitamin D. Osteologie/Osteology 2011; 20 (04) 293-298.
  • 19 Croucher PI, McDonald MM, Martin TJ. Bone metastasis: the importance of the neighbourhood. Nature reviews Cancer 2016; 16 (06) 373-386.
  • 20 Zheng Y, Zhou H, Dunstan CR, Sutherland RL, Seibel MJ. The role of the bone microenvironment in skeletal metastasis. Journal of Bone Oncology 2013; 02 (01) 47-57.
  • 21 Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem with health consequences. The American journal of clinical nutrition 2008; 87 (04) 1080S-6S.
  • 22 Coleman RE, Major P, Lipton A, Brown JE, Lee KA, Smith M. et al. Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2005; 23 (22) 4925-4935.
  • 23 Spina CS, Tangpricha V, Uskokovic M, Adorinic L, Maehr H, Holick MF. Vitamin D and cancer. Anticancer research 2006; 26 (4A): 2515-2524.
  • 24 Garland CF, Garland FC, Gorham ED, Lipkin M, Newmark H, Mohr SB. et al. The role of vitamin D in cancer prevention. American journal of public health 2006; 96 (02) 252-261.
  • 25 Shui I, Giovannucci E. Vitamin D status and cancer incidence and mortality. Advances in experimental medicine and biology 2014; 810: 33-51.
  • 26 Ordonez JMMena, Brenner H. Vitamin D and cancer: an overview on epidemiological studies. Advances in experimental medicine and biology 2014; 810: 17-32.
  • 27 Zheng Y, Zhou H, Ooi LL, Snir AD, Dunstan CR, Seibel MJ. Vitamin D deficiency promotes prostate cancer growth in bone. The Prostate 2011; 71 (09) 1012-1021.
  • 28 Ooi LL, Zheng Y, Zhou H, Trivedi T, Conigrave AD, Seibel MJ. et al. Vitamin D deficiency promotes growth of MCF-7 human breast cancer in a rodent model of osteosclerotic bone metastasis. Bone 2010; 47 (04) 795-803.
  • 29 Ooi LL, Zhou H, Kalak R, Zheng Y, Conigrave AD, Seibel MJ. et al. Vitamin D deficiency promotes human breast cancer growth in a murine model of bone metastasis. Cancer research 2010; 70 (05) 1835-1844.
  • 30 Lauter B, Schmidt-Wolf IG. Prevalence, Supplementation, and Impact of Vitamin D Deficiency in Multiple Myeloma Patients. Cancer investigation 2015; 33 (10) 505-509.
  • 31 Badros A, Goloubeva O, Terpos E, Milliron T, Baer MR, Streeten E. Prevalence and significance of vitamin D deficiency in multiple myeloma patients. British journal of haematology 2008; 142 (03) 492-494.
  • 32 Maier GS, Horas K, Kurth AA, Lazovic D, Seeger JB, Maus U. Prevalence of Vitamin D Deficiency in Patients with Bone Metastases and Multiple Myeloma. Anticancer research 2015; 35 (11) 6281-6285.
  • 33 Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nature reviews Cancer 2002; 02 (08) 584-593.
  • 34 Guise TA, O’Keefe R, Randall RL, Terek RM. Molecular biology and therapeutics in musculoskeletal oncology. J Bone Joint Surg Am 2009; 91 (03) 724-732.
  • 35 Blair JM, Zhou H, Seibel MJ, Dunstan CR. Mechanisms of disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. Nature clinical practice Oncology 2006; 03 (01) 41-49.
  • 36 Zheng Y, Zhou H, Brennan K, Blair JM, Modzelewski JR, Seibel MJ. et al. Inhibition of bone resorption, rather than direct cytotoxicity, mediates the anti-tumour actions of ibandronate and osteoprotegerin in a murine model of breast cancer bone metastasis. Bone 2007; 40 (02) 471-478.
  • 37 Zheng Y, Zhou H, Fong-Yee C, Modzelewski JR, Seibel MJ, Dunstan CR. Bone resorption increases tumour growth in a mouse model of osteosclerotic breast cancer metastasis. Clinical & experimental metastasis 2008; 25 (05) 559-567.
  • 38 Morony S, Capparelli C, Sarosi I, Lacey DL, Dunstan CR, Kostenuik PJ. Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer research 2001; 61 (11) 4432-4436.
  • 39 Cook RJ, Coleman R, Brown J, Lipton A, Major P, Hei YJ. et al. Markers of bone metabolism and survival in men with hormone-refractory metastatic prostate cancer. Clin Cancer Res 2006; 12 (11 Pt 1) 3361-3367.
  • 40 Lagunova Z, Porojnicu AC, Dahlback A, Berg JP, Beer TM, Moan J. Prostate cancer survival is dependent on season of diagnosis. Prostate 2007; 67 (12) 1362-1370.
  • 41 Li H, Stampfer MJ, Hollis JB, Mucci LA, Gaziano JM, Hunter D. et al. A prospective study of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate cancer. PLoS Med 2007; 04 (03) e103.
  • 42 Grant WB. Geographic variation of prostate cancer mortality rates in the United States: Implications for prostate cancer risk related to vitamin D. Int J Cancer 2004; 111 (03) 470-471 author reply 2.
  • 43 Horas K, Seibel MJ. Knochenmetastasen. 2018. In: Fachwissen Osteologie. Urban & Fischer; [228–31].
  • 44 Hofbauer LC, Rachner TD, Coleman RE, Jakob F. Endocrine aspects of bone metastases. The lancet Diabetes & endocrinology 2014; 02 (06) 500-512.
  • 45 Horas K, Zheng Y, Zhou H, Seibel MJ. Animal Models for Breast Cancer Metastasis to Bone: Opportunities and Limitations. Cancer investigation 2015; Aug 25: 1-10.
  • 46 Kovacic N, Croucher PI, McDonald MM. Signaling between tumor cells and the host bone marrow microenvironment. Calcified tissue international 2014; 94 (01) 125-139.
  • 47 Zheng Y, Chow SO, Boernert K, Basel D, Mikuscheva A, Kim S. et al. Direct crosstalk between cancer and osteoblast lineage cells fuels metastatic growth in bone via auto-amplification of IL-6 and RANKL signaling pathways. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 2014; 29 (09) 1938-1949.
  • 48 Pfitzner BM, Branstetter D, Loibl S, Denkert C, Lederer B, Schmitt WD. et al. RANK expression as a prognostic and predictive marker in breast cancer. Breast cancer research and treatment 2014; 145 (02) 307-315.
  • 49 Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM. et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 2011; 470 (7335): 548-553.
  • 50 Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R. et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 2010; 468 (7320): 103-107.
  • 51 Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, Lee HJ. et al. Osteoclast differentiation factor RANKL controls development of progestindriven mammary cancer. Nature 2010; 468 (7320): 98-102.
  • 52 Lawson MA, McDonald MM, Kovacic N, Hua WKhoo, Terry RL, Down J. et al. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nature communications 2015; 06: 8983.
  • 53 Shiozawa Y, Taichman RS. Cancer Stem Cells and the Bone Marrow Microenvironment. BoneKEy reports. 2012 2012(1).
  • 54 Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J. et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. The Journal of clinical investigation 2011; 121 (04) 1298-1312.
  • 55 Rossnagl S, Ghura H, Groth C, Altrock E, Jakob F, Schott S. et al. A Subpopulation of Stromal Cells Controls Cancer Cell Homing to the Bone Marrow. Cancer research 2018; 78 (01) 129-142.
  • 56 Thompson L, Wang S, Tawfik O, Templeton K, Tancabelic J, Pinson D. et al. Effect of 25-hydroxyvitamin D3 and 1 alpha,25 dihydroxyvitamin D3 on differentiation and apoptosis of human osteosarcoma cell lines. Journal of orthopaedic research 2012; 30 (05) 831-844.
  • 57 Shimizu T, Kamel WA, Yamaguchi-Iwai S, Fukuchi Y, Muto A, Saya H. Calcitriol exerts an anti-tumor effect in osteosarcoma by inducing the endoplasmic reticulum stress response. Cancer science 2017; 108 (09) 1793-1802.
  • 58 Engel N, Adamus A, Schauer N, Kuhn J, Nebe B, Seitz G. et al. Synergistic Action of Genistein and Calcitriol in Immature Osteosarcoma MG-63 Cells by SGPL1 Up-Regulation. PloS one 2017; 12 (01) e0169742.
  • 59 Dass CR, Choong PF. Zoledronic acid inhibits osteosarcoma growth in an orthotopic model. Molecular cancer therapeutics 2007; 06 (12 Pt 1) 3263-3270.
  • 60 Labrinidis A, Hay S, Liapis V, Ponomarev V, Findlay DM, Evdokiou A. Zoledronic acid inhibits both the osteolytic and osteoblastic components of osteosarcoma lesions in a mouse model. Clinical cancer research 2009; 15 (10) 3451-3461.
  • 61 Ory B, Heymann MF, Kamijo A, Gouin F, Heymann D, Redini F. Zoledronic acid suppresses lung metastases and prolongs overall survival of osteosarcoma-bearing mice. Cancer 2005; 104 (11) 2522-2529.
  • 62 Ohba T, Cates JM, Cole HA, Slosky DA, Haro H, Ichikawa J. et al. Pleiotropic effects of bisphosphonates on osteosarcoma. Bone 2014; 63: 110-120.
  • 63 Xiang W, Jiang T, Guo F, Xu T, Gong C, Cheng P. et al. Evaluating the role of PTH in promotion of chondrosarcoma cell proliferation and invasion by inhibiting primary cilia expression. International journal of molecular sciences 2014; 15 (11) 19816-19831.
  • 64 Odri GA, Dumoucel S, Picarda G, Battaglia S, Lamoureux F, Corradini N. et al. Zoledronic acid as a new adjuvant therapeutic strategy for Ewing’s sarcoma patients. Cancer research 2010; 70 (19) 7610-7619.
  • 65 Ng AC, Kumar SK, Rajkumar SV, Drake MT. Impact of vitamin D deficiency on the clinical presentation and prognosis of patients with newly diagnosed multiple myeloma. American journal of hematology 2009; 84 (07) 397-400.
  • 66 Matsumoto K, Azuma Y, Kiyoki M, Okumura H, Hashimoto K, Yoshikawa K. Involvement of endogenously produced 1,25-dihydroxyvitamin D-3 in the growth and differentiation of human keratinocytes. Biochim Biophys Acta 1991; 1092 (03) 311-318.
  • 67 Pendas-Franco N, Aguilera O, Pereira F, Gonzalez-Sancho JM, Munoz A. Vitamin D and Wnt/betacatenin pathway in colon cancer: role and regulation of DICKKOPF genes. Anticancer Res 2008; 28 (5A): 2613-2623.
  • 68 Zheng Y, Trivedi T, Lin RC, Fong-Yee C, Nolte R, Manibo J. et al. Loss of the vitamin D receptor in human breast and prostate cancers strongly induces cell apoptosis through downregulation of Wnt/beta-catenin signaling. Bone Res 2017; 05: 17023.
  • 69 Parisi E, Rene JM, Cardus A, Valcheva P, Pinol-Felis C, Valdivielso JM. et al. Vitamin D receptor levels in colorectal cancer. Possible role of BsmI polymorphism. J Steroid Biochem Mol Biol 2008; 111 (1–2): 87-90.
  • 70 Wada K, Tanaka H, Maeda K, Inoue T, Noda E, Amano R. et al. Vitamin D receptor expression is associated with colon cancer in ulcerative colitis. Oncol Rep 2009; 22 (05) 1021-1025.
  • 71 Campbell MJ, Trump DL. Vitamin D Receptor Signaling and Cancer. Endocrinology and metabolism clinics of North America 2017; 46 (04) 1009-1038.
  • 72 Gallagher R, Keighley J, Tancabelic J, Garimella R, Pinson D, Templeton K. et al. Clinicopathologic correlation of vitamin D receptor expression with retinoid X receptor and MIB-1 expression in primary and metastatic osteosarcoma. Annals of diagnostic pathology 2012; 16 (05) 323-329.
  • 73 Reinhardt TA, Horst RL. Ketoconazole inhibits self-induced metabolism of 1,25-dihydroxyvitamin D3 and amplifies 1,25-dihydroxyvitamin D3 receptor up-regulation in rat osteosarcoma cells. Archives of biochemistry and biophysics 1989; 272 (02) 459-465.
  • 74 Sunita DRao, Siu-Caldera ML, Sekimoto H, Gennaro L, Vouros P, Takayama H. et al. Metabolism of 2-methyl analogs of 1alpha,25-dihydroxyvitamin D3 in rat osteosarcoma cells (UMR 106). Biological & pharmaceutical bulletin 2002; 25 (07) 845-852.
  • 75 Atkins GJ, Anderson PH, Findlay DM, Welldon KJ, Vincent C, Zannettino AC. et al. Metabolism of vitamin D3 in human osteoblasts: evidence for autocrine and paracrine activities of 1 alpha,25-dihydroxyvitamin D3. Bone 2007; 40 (06) 1517-1528.
  • 76 Takano M, Yasuda K, Tohyama E, Higuchi E, Sakaki T, Kittaka A. Synthesis of the CYP24A1 major metabolite of 2-alpha-[2-(tetrazol2-yl)ethyl]-1alpha,25-dihydroxyvitamin D3. The Journal of steroid biochemistry and molecular biology 2017; 173: 75-78.