Neuropediatrics 2019; 50(01): 002-014
DOI: 10.1055/s-0038-1673630
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Inherited Disorders of Neurotransmitters: Classification and Practical Approaches for Diagnosis and Treatment

Heiko Brennenstuhl
1   Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children's Hospital Heidelberg, Heidelberg, Germany
,
Sabine Jung-Klawitter
1   Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children's Hospital Heidelberg, Heidelberg, Germany
,
Birgit Assmann
1   Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children's Hospital Heidelberg, Heidelberg, Germany
,
Thomas Opladen
1   Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children's Hospital Heidelberg, Heidelberg, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

02. Mai 2018

22. August 2018

Publikationsdatum:
29. Oktober 2018 (online)

Abstract

Neurotransmitter deficiencies are rare neurological disorders with clinical onset during childhood. The disorders are caused by genetic defects in the enzymes involved in synthesis, degradation, or transport of neurotransmitters or by defects in the cofactor biosynthesis such as tetrahydrobiopterin (BH4). With the newly described DNAJC12 deficiency, a chaperon-associated neurotransmitter disorder, the pathophysiological spectrum has been broadened. All deficiencies result in a lack of monoamine neurotransmitters, especially dopamine and its products, with a subset leading to decreased levels of serotonin. Symptoms can occur already in the neonatal period. Classical signs are hypotonia, movement disorders, autonomous dysregulations, and impaired development. Diagnosis depends on quantitative detection of neurotransmitters in cerebrospinal fluid, since peripheral markers in blood or urine are less reliable. Treatment is based on supplementation of the missing neurotransmitter precursors or restoring deficient cofactors for endogenous enzymatic synthesis. In recent years, knowledge about this orphan group of diseases increased substantially among clinicians. However, the difficult task of integrating clinical symptoms and laboratory values still leads to a critical delay in diagnosis and therapy for patients. This review aims at enhancing the understanding of neurotransmitter disorders and should help practicing clinicians to choose useful diagnostic steps on the way to a valid diagnosis.

Review Criteria

PubMed was used to find English full-text articles published between January 1987 and July 2018 corresponding to the terms “monoamine,” “neurotransmitter,” “pediatric,” and “deficiency.” Articles were carefully read, and distinct reference articles were further investigated for clinically relevant research.


 
  • References

  • 1 Nestler EJ, Hyman SE, Holtzman DM, Malenka RC. Synaptic transmission. Molecular Neuropharmacology. Third ed. McGraw Hill; 2014
  • 2 Kurian MA, Gissen P, Smith M, Heales Jr S, Clayton PT. The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurol 2011; 10 (08) 721-733
  • 3 Opladen T, Hoffmann GF, Blau N. An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalaninaemia. J Inherit Metab Dis 2012; 35 (06) 963-973
  • 4 Dekker SL, Kampinga HH, Bergink S. DNAJs: more than substrate delivery to HSPA. Front Mol Biosci 2015; 2: 35
  • 5 Sarparanta J, Jonson PH, Golzio C. , et al. Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet 2012; 44 (04) 450-455 , S1–S2
  • 6 Crane BR, Arvai AS, Ghosh DK. , et al. Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 1998; 279 (5359): 2121-2126
  • 7 Marras C, Lang A, van de Warrenburg BP. , et al. Nomenclature of genetic movement disorders: recommendations of the International Parkinson and Movement Disorder Society task force. Mov Disord 2017; 32 (05) 724-725
  • 8 Nygaard TG. Dopa-responsive dystonia. Delineation of the clinical syndrome and clues to pathogenesis. Adv Neurol 1993; 60: 577-585
  • 9 Goodchild RE, Grundmann K, Pisani A. New genetic insights highlight ‘old’ ideas on motor dysfunction in dystonia. Trends Neurosci 2013; 36 (12) 717-725
  • 10 López-Laso E, Ochoa-Sepúlveda JJ, Ochoa-Amor JJ. , et al. Segawa syndrome due to mutation Q89X in the GCH1 gene: a possible founder effect in Córdoba (southern Spain). J Neurol 2009; 256 (11) 1816-1824
  • 11 Segawa M, Nomura Y, Nishiyama N. Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease). Ann Neurol 2003; 54 (Suppl. 06) S32-S45
  • 12 Bandmann O, Wood NW. Dopa-responsive dystonia -- the story so far. Neuropediatrics 2002; 33 (01) 1-5
  • 13 López-Laso E, Sánchez-Raya A, Moriana JA. , et al. Neuropsychiatric symptoms and intelligence quotient in autosomal dominant Segawa disease. J Neurol 2011; 258 (12) 2155-2162
  • 14 Nygaard TG, Marsden CD, Fahn S. Dopa-responsive dystonia: long-term treatment response and prognosis. Neurology 1991; 41 (2 (Pt 1)): 174-181
  • 15 Tadic V, Kasten M, Brüggemann N, Stiller S, Hagenah J, Klein C. Dopa-responsive dystonia revisited: diagnostic delay, residual signs, and nonmotor signs. Arch Neurol 2012; 69 (12) 1558-1562
  • 16 Thöny B, Blau N. Mutations in the BH4-metabolizing genes GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase. Hum Mutat 2006; 27 (09) 870-878
  • 17 Friedman J, Roze E, Abdenur JE. , et al. Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy. Ann Neurol 2012; 71 (04) 520-530
  • 18 Friedman J. Sepiapterin Reductase Deficiency. In: Adam MP, Ardinger HH, Pagon RA. , et al., eds. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993. -2018. Available at: https://www.ncbi.nlm.nih.gov/books/NBK304122/ . Accessed October 1, 2018
  • 19 Abeling NG, Duran M, Bakker HD. , et al. Sepiapterin reductase deficiency an autosomal recessive DOPA-responsive dystonia. Mol Genet Metab 2006; 89 (1-2): 116-120
  • 20 Friedman J, Hyland K, Blau N, MacCollin M. Dopa-responsive hypersomnia and mixed movement disorder due to sepiapterin reductase deficiency. Neurology 2006; 67 (11) 2032-2035
  • 21 Leuzzi V, Carducci C, Tolve M, Giannini MT, Angeloni A, Carducci C. Very early pattern of movement disorders in sepiapterin reductase deficiency. Neurology 2013; 81 (24) 2141-2142
  • 22 Neville BG, Parascandalo R, Farrugia R, Felice A. Sepiapterin reductase deficiency: a congenital dopa-responsive motor and cognitive disorder. Brain 2005; 128 (Pt 10): 2291-2296
  • 23 Zielonka M, Makhseed N, Blau N, Bettendorf M, Hoffmann GF, Opladen T. Dopamine-responsive growth-hormone deficiency and central hypothyroidism in sepiapterin reductase deficiency. JIMD Rep 2015; 24: 109-113
  • 24 Carducci C, Santagata S, Friedman J. , et al. Urine sepiapterin excretion as a new diagnostic marker for sepiapterin reductase deficiency. Mol Genet Metab 2015; 115 (04) 157-160
  • 25 Opladen T, Hoffmann G, Hörster F. , et al. Clinical and biochemical characterization of patients with early infantile onset of autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia. Mov Disord 2011; 26 (01) 157-161
  • 26 Horvath GA, Stockler-Ipsiroglu SG, Salvarinova-Zivkovic R. , et al. Autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia: evidence of a phenotypic continuum between dominant and recessive forms. Mol Genet Metab 2008; 94 (01) 127-131
  • 27 Niederwieser A, Shintaku H, Leimbacher W. , et al. “Peripheral” tetrahydrobiopterin deficiency with hyperphenylalaninaemia due to incomplete 6-pyruvoyl tetrahydropterin synthase deficiency or heterozygosity. Eur J Pediatr 1987; 146 (03) 228-232
  • 28 Blau N, Thöny B, Cotton RGH. , et al. Disorders of tetrahydrobiopterin and related biogenic amines. In: Scriver CR, Beaudet AL, Sly WS. et al., ed. The Metabolic and Molecular Bases of Inherited Disease. New York, NY: McGraw-Hill; 2001: 1725-1776
  • 29 Leuzzi V, Carducci CA, Carducci CL. , et al. Phenotypic variability, neurological outcome and genetics background of 6-pyruvoyl-tetrahydropterin synthase deficiency. Clin Genet 2010; 77 (03) 249-257
  • 30 Werner ER, Blau N, Thöny B. Tetrahydrobiopterin: biochemistry and pathophysiology. Biochem J 2011; 438 (03) 397-414
  • 31 Ponzone A, Spada M, Ferraris S, Dianzani I, de Sanctis L. Dihydropteridine reductase deficiency in man: from biology to treatment. Med Res Rev 2004; 24 (02) 127-150
  • 32 Longo N. Disorders of biopterin metabolism. J Inherit Metab Dis 2009; 32 (03) 333-342
  • 33 Ramaekers VT, Blau N. Cerebral folate deficiency. Dev Med Child Neurol 2004; 46 (12) 843-851
  • 34 Gasnier B. The loading of neurotransmitters into synaptic vesicles. Biochimie 2000; 82 (04) 327-337
  • 35 Hyland K, Shoffner J, Heales SJ. Cerebral folate deficiency. J Inherit Metab Dis 2010; 33 (05) 563-570
  • 36 Coughlin II CR, Hyland K, Randall R, Ficicioglu C. Dihydropteridine reductase deficiency and treatment with tetrahydrobiopterin: a case report. JIMD Rep 2013; 10: 53-56
  • 37 Irons M, Levy HL, O'Flynn ME. , et al. Folinic acid therapy in treatment of dihydropteridine reductase deficiency. J Pediatr 1987; 110 (01) 61-67
  • 38 Thöny B, Neuheiser F, Kierat L. , et al. Mutations in the pterin-4alpha-carbinolamine dehydratase (PCBD) gene cause a benign form of hyperphenylalaninemia. Hum Genet 1998; 103 (02) 162-167
  • 39 Rhee KH, Stier G, Becker PB, Suck D, Sandaltzopoulos R. The bifunctional protein DCoH modulates interactions of the homeodomain transcription factor HNF1 with nucleic acids. J Mol Biol 1997; 265 (01) 20-29
  • 40 Mendel DB, Khavari PA, Conley PB. , et al. Characterization of a cofactor that regulates dimerization of a mammalian homeodomain protein. Science 1991; 254 (5039): 1762-1767
  • 41 Simaite D, Kofent J, Gong M. , et al. Recessive mutations in PCBD1 cause a new type of early-onset diabetes. Diabetes 2014; 63 (10) 3557-3564
  • 42 Willemsen MA, Verbeek MM, Kamsteeg EJ. , et al. Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain 2010; 133 (Pt 6): 1810-1822
  • 43 Pons R, Syrengelas D, Youroukos S. , et al. Levodopa-induced dyskinesias in tyrosine hydroxylase deficiency. Mov Disord 2013; 28 (08) 1058-1063
  • 44 Marín-Valencia I, Serrano M, Ormazabal A. , et al. Biochemical diagnosis of dopaminergic disturbances in paediatric patients: analysis of cerebrospinal fluid homovanillic acid and other biogenic amines. Clin Biochem 2008; 41 (16-17): 1306-1315
  • 45 Hoffmann GF, Assmann B, Bräutigam C. , et al. Tyrosine hydroxylase deficiency causes progressive encephalopathy and dopa-nonresponsive dystonia. Ann Neurol 2003; 54 (Suppl. 06) S56-S65
  • 46 Yeung WL, Wong VC, Chan KY. , et al. Expanding phenotype and clinical analysis of tyrosine hydroxylase deficiency. J Child Neurol 2011; 26 (02) 179-187
  • 47 Lee HF, Tsai CR, Chi CS, Chang TM, Lee HJ. Aromatic L-amino acid decarboxylase deficiency in Taiwan. Eur J Paediatr Neurol 2009; 13 (02) 135-140
  • 48 Mastrangelo M, Caputi C, Galosi S, Giannini MT, Leuzzi V. Transdermal rotigotine in the treatment of aromatic L-amino acid decarboxylase deficiency. Mov Disord 2013; 28 (04) 556-557
  • 49 Brun L, Ngu LH, Keng WT. , et al. Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology 2010; 75 (01) 64-71
  • 50 Swoboda KJ, Hyland K, Goldstein DS. , et al. Clinical and therapeutic observations in aromatic L-amino acid decarboxylase deficiency. Neurology 1999; 53 (06) 1205-1211
  • 51 Haavik J, Blau N, Thöny B. Mutations in human monoamine-related neurotransmitter pathway genes. Hum Mutat 2008; 29 (07) 891-902
  • 52 Hyland K, Surtees RA, Rodeck C, Clayton PT. Aromatic L-amino acid decarboxylase deficiency: clinical features, diagnosis, and treatment of a new inborn error of neurotransmitter amine synthesis. Neurology 1992; 42 (10) 1980-1988
  • 53 Wassenberg T, Monnens LA, Geurtz BP, Wevers RA, Verbeek MM, Willemsen MA. The paradox of hyperdopaminuria in aromatic L-amino acid deficiency explained. JIMD Rep 2012; 4: 39-45
  • 54 Atwal PS, Donti TR, Cardon AL. , et al. Aromatic L-amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma. Mol Genet Metab 2015; 115 (2-3): 91-94
  • 55 Bräutigam C, Hyland K, Wevers R. , et al. Clinical and laboratory findings in twins with neonatal epileptic encephalopathy mimicking aromatic L-amino acid decarboxylase deficiency. Neuropediatrics 2002; 33 (03) 113-117
  • 56 Wassenberg T, Molero-Luis M, Jeltsch K. , et al. Consensus guideline for the diagnosis and treatment of aromatic l-amino acid decarboxylase (AADC) deficiency. Orphanet J Rare Dis 2017; 12 (01) 12
  • 57 Hwu WL, Muramatsu S, Tseng SH. , et al. Gene therapy for aromatic L-amino acid decarboxylase deficiency. Sci Transl Med 2012; 4 (134) 134ra61
  • 58 Chang YT, Sharma R, Marsh JL. , et al. Levodopa-responsive aromatic L-amino acid decarboxylase deficiency. Ann Neurol 2004; 55 (03) 435-438
  • 59 Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 1993; 262 (5133): 578-580
  • 60 Cheung NW, Earl J. Monoamine oxidase deficiency: a cause of flushing and attention-deficit/hyperactivity disorder?. Arch Intern Med 2001; 161 (20) 2503-2504
  • 61 Schuback DE, Mulligan EL, Sims KB. , et al. Screen for MAOA mutations in target human groups. Am J Med Genet 1999; 88 (01) 25-28
  • 62 Whibley A, Urquhart J, Dore J. , et al. Deletion of MAOA and MAOB in a male patient causes severe developmental delay, intermittent hypotonia and stereotypical hand movements. Eur J Hum Genet 2010; 18 (10) 1095-1099
  • 63 Lenders JW, Eisenhofer G, Abeling NG. , et al. Specific genetic deficiencies of the A and B isoenzymes of monoamine oxidase are characterized by distinct neurochemical and clinical phenotypes. J Clin Invest 1996; 97 (04) 1010-1019
  • 64 Abeling NG, van Gennip AH, Overmars H, van Oost BA, Brunner HG. Biogenic amine metabolite patterns in the urine of monoamine oxidase A-deficient patients. A possible tool for diagnosis. J Inherit Metab Dis 1994; 17 (03) 339-341
  • 65 Brunner HG, Nelen MR, van Zandvoort P. , et al. X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am J Hum Genet 1993; 52 (06) 1032-1039
  • 66 Godar SC, Bortolato M, Castelli MP. , et al. The aggression and behavioral abnormalities associated with monoamine oxidase A deficiency are rescued by acute inhibition of serotonin reuptake. J Psychiatr Res 2014; 56: 1-9
  • 67 Robertson D, Garland EM. Dopamine beta-hydroxylase deficiency. In: Adam MP, Ardinger HH, Pagon RA. , et al., eds. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993. -2018. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1474/ . Accessed October 1, 2018
  • 68 Ste Marie L, Palmiter RD. Norepinephrine and epinephrine-deficient mice are hyperinsulinemic and have lower blood glucose. Endocrinology 2003; 144 (10) 4427-4432
  • 69 Arnold AC, Garland EM, Celedonio JE. , et al. Hyperinsulinemia and insulin resistance in dopamine β-hydroxylase deficiency. J Clin Endocrinol Metab 2017; 102 (01) 10-14
  • 70 Timmers HJ, Deinum J, Wevers RA, Lenders JW. Congenital dopamine-beta-hydroxylase deficiency in humans. Ann N Y Acad Sci 2004; 1018: 520-523
  • 71 van den Berg MP, Almomani R, Biaggioni I. , et al. Mutations in CYB561 causing a novel orthostatic hypotension syndrome. Circ Res 2018; 122 (06) 846-854
  • 72 Ford CP. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience 2014; 282: 13-22
  • 73 Kurian MA, Li Y, Zhen J. , et al. Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study. Lancet Neurol 2011; 10 (01) 54-62
  • 74 Ng J, Zhen J, Meyer E. , et al. Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood. Brain 2014; 137 (Pt 4): 1107-1119
  • 75 Yildiz Y, Pektas E, Tokatli A, Haliloglu G. Hereditary dopamine transporter deficiency syndrome: challenges in diagnosis and treatment. Neuropediatrics 2017; 48 (01) 49-52
  • 76 Rilstone JJ, Alkhater RA, Minassian BA. Brain dopamine-serotonin vesicular transport disease and its treatment. N Engl J Med 2013; 368 (06) 543-550
  • 77 Rath M, Korenke GC, Najm J. , et al. Exome sequencing results in identification and treatment of brain dopamine-serotonin vesicular transport disease. J Neurol Sci 2017; 379: 296-297
  • 78 Ng J, Heales SJ, Kurian MA. Clinical features and pharmacotherapy of childhood monoamine neurotransmitter disorders. Paediatr Drugs 2014; 16 (04) 275-291
  • 79 Anikster Y, Haack TB, Vilboux T. , et al. Biallelic mutations in DNAJC12 cause hyperphenylalaninemia, dystonia, and intellectual disability. Am J Hum Genet 2017; 100 (02) 257-266
  • 80 Blau N, Martinez A, Hoffmann GF, Thöny B. DNAJC12 deficiency: a new strategy in the diagnosis of hyperphenylalaninemias. Mol Genet Metab 2018; 123 (01) 1-5
  • 81 Straniero L, Guella I, Cilia R. , et al. DNAJC12 and dopa-responsive nonprogressive parkinsonism. Ann Neurol 2017; 82 (04) 640-646
  • 82 Katus LE, Frucht SJ. An unusual presentation of tyrosine hydroxylase deficiency. J Clin Mov Disord 2017; 4: 18
  • 83 Woody RC, Brewster MA, Glasier C. Progressive intracranial calcification in dihydropteridine reductase deficiency prior to folinic acid therapy. Neurology 1989; 39 (05) 673-675
  • 84 Coşkun T, Besim A, Ozalp I, Eryilmaz M. Intracranial calcification in dihydropteridine reductase deficiency. Turk J Pediatr 1990; 32 (04) 259-264
  • 85 Smit M, Bartels AL, van Faassen M. , et al. Serotonergic perturbations in dystonia disorders-a systematic review. Neurosci Biobehav Rev 2016; 65: 264-275
  • 86 Hoffmann GF, Blau N. Congenital Neurotransmitter Disorders: A Clinical Approach. Nova Science Publishers; 2014
  • 87 Maas RPPWM, Wassenberg T, Lin JP, van de Warrenburg BPC, Willemsen MAAP. l-Dopa in dystonia: a modern perspective. Neurology 2017; 88 (19) 1865-1871
  • 88 Birnbacher R, Scheibenreiter S, Blau N, Bieglmayer C, Frisch H, Waldhauser F. Hyperprolactinemia, a tool in treatment control of tetrahydrobiopterin deficiency: endocrine studies in an affected girl. Pediatr Res 1998; 43 (4 Pt 1): 472-477
  • 89 Opladen T, Cortès-Saladelafont E, Mastrangelo M. , et al; International Working Group on Neurotransmitter related disorders (iNTD). The International Working Group on Neurotransmitter related Disorders (iNTD): a worldwide research project focused on primary and secondary neurotransmitter disorders. Mol Genet Metab Rep 2016; 9: 61-66
  • 90 Perlman RL. Mouse models of human disease: an evolutionary perspective. Evol Med Public Health 2016; 2016 (01) 170-176
  • 91 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126 (04) 663-676
  • 92 Takahashi K, Tanabe K, Ohnuki M. , et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131 (05) 861-872
  • 93 Jung-Klawitter S, Blau N, Sebe A, Ebersold J, Göhring G, Opladen T. Generation of an iPSC line from a patient with tyrosine hydroxylase (TH) deficiency: TH-1 iPSC. Stem Cell Res (Amst) 2016; 17 (03) 580-583
  • 94 Jung-Klawitter S, Ebersold J, Göhring G, Blau N, Opladen T. Generation of an iPSC line from a patient with GTP cyclohydrolase 1 (GCH1) deficiency: HDMC0061i-GCH1. Stem Cell Res (Amst) 2017; 20: 38-41
  • 95 Ishikawa T, Imamura K, Kondo T. , et al. Genetic and pharmacological correction of aberrant dopamine synthesis using patient iPSCs with BH4 metabolism disorders. Hum Mol Genet 2016; 25 (23) 5188-5197
  • 96 Lancaster MA, Renner M, Martin CA. , et al. Cerebral organoids model human brain development and microcephaly. Nature 2013; 501 (7467): 373-379
  • 97 Qian X, Nguyen HN, Song MM. , et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 2016; 165 (05) 1238-1254
  • 98 Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Reports 2015; 10 (04) 537-550
  • 99 Jung-Klawitter S, Opladen T. Induced pluripotent stem cells (iPSCs) as model to study inherited defects of neurotransmission in inborn errors of metabolism. J Inherit Metab Dis 2018
  • 100 Korner G, Noain D, Ying M. , et al. Brain catecholamine depletion and motor impairment in a Th knock-in mouse with type B tyrosine hydroxylase deficiency. Brain 2015; 138 (Pt 10): 2948-2963
  • 101 Takazawa C, Fujimoto K, Homma D. , et al. A brain-specific decrease of the tyrosine hydroxylase protein in sepiapterin reductase-null mice--as a mouse model for Parkinson's disease. Biochem Biophys Res Commun 2008; 367 (04) 787-792
  • 102 Salvatore MF, Calipari ES, Jones SR. Regulation of tyrosine hydroxylase expression and phosphorylation in dopamine transporter-deficient mice. ACS Chem Neurosci 2016; 7 (07) 941-951