RSS-Feed abonnieren
DOI: 10.1055/s-0038-1675551
Differential Diagnosis of Spine Tumors: My Favorite Mistake
Publikationsverlauf
Publikationsdatum:
30. Januar 2019 (online)
Abstract
Imaging has a pivotal role in the detection and characterization of spine bone tumors (SBTs), especially using magnetic resonance (MR) imaging and computed tomography (CT). Although MR performed with conventional pulse sequences has a robust reliability in the assessment of SBTs, some imaging features of benign lesions and malignancies overlap, making the differential diagnosis challenging. Several imaging tools are now available to perform a correct interpretation of images of SBTs including diffusion-weighted imaging, dynamic contrast-enhanced MR, Dixon sequences, and dual-energy CT. Nevertheless, strengths and weaknesses of imaging modalities should be kept in mind, and it is crucial to be aware of the pitfalls that can be encountered in daily clinical practice when dealing with these lesions. This review provides an overview on the main challenges encountered when dealing with SBTs, providing some tricks of the trade to avoid possible diagnostic traps.
-
References
- 1 Sundaresan N, Rosen G, Boriani S. Primary malignant tumors of the spine. Orthop Clin North Am 2009; 40 (01) 21-36 , v
- 2 Kim HJ, Ryu KN, Choi WS, Choi BK, Choi JM, Yoon Y. Spinal involvement of hematopoietic malignancies and metastasis: differentiation using MR imaging. Clin Imaging 1999; 23 (02) 125-133
- 3 Gasbarrini A, Cappuccio M, Mirabile L. , et al. Spinal metastases: treatment evaluation algorithm. Eur Rev Med Pharmacol Sci 2004; 8 (06) 265-274
- 4 Choi D, Crockard A, Bunger C. , et al; Global Spine Tumor Study Group. Review of metastatic spine tumour classification and indications for surgery: the consensus statement of the Global Spine Tumour Study Group. Eur Spine J 2010; 19 (02) 215-222
- 5 Pozzi G, Albano D, Messina C. , et al. Solid bone tumors of the spine: diagnostic performance of apparent diffusion coefficient measured using diffusion-weighted MRI using histology as a reference standard. J Magn Reson Imaging 2018; 47 (04) 1034-1042
- 6 Rodallec MH, Feydy A, Larousserie F. , et al. Diagnostic imaging of solitary tumors of the spine: what to do and say. Radiographics 2008; 28 (04) 1019-1041
- 7 Wald JT. Imaging of spine neoplasm. Radiol Clin North Am 2012; 50 (04) 749-776
- 8 Boriani S, Bandiera S, Biagini R. , et al. Chordoma of the mobile spine: fifty years of experience. Spine 2006; 31 (04) 493-503
- 9 Thawait SK, Marcus MA, Morrison WB, Klufas RA, Eng J, Carrino JA. Research synthesis: what is the diagnostic performance of magnetic resonance imaging to discriminate benign from malignant vertebral compression fractures? Systematic review and meta-analysis. Spine 2012; 37 (12) E736-E744
- 10 Albano D, La Grutta L, Grassedonio E. , et al. Pitfalls in whole body MRI with diffusion weighted imaging performed on patients with lymphoma: what radiologists should know. Magn Reson Imaging 2016; 34 (07) 922-931
- 11 Barzin M, Maleki I. Incidence of vertebral hemangioma on spinal magnetic resonance imaging in northern Iran. Pak J Biol Sci 2009; 12 (06) 542-544
- 12 Gaudino S, Martucci M, Colantonio R. , et al. A systematic approach to vertebral hemangioma. Skeletal Radiol 2015; 44 (01) 25-36
- 13 Cross JJ, Antoun NM, Laing RJ, Xuereb J. Imaging of compressive vertebral haemangiomas. Eur Radiol 2000; 10 (06) 997-1002
- 14 Morales KA, Arevalo-Perez J, Peck KK, Holodny AI, Lis E, Karimi S. Differentiating atypical hemangiomas and metastatic vertebral lesions: the role of T1-weighted dynamic contrast-enhanced MRI. AJNR Am J Neuroradiol 2018; 39 (05) 968-973
- 15 Laredo JD, Assouline E, Gelbert F, Wybier M, Merland JJ, Tubiana JM. Vertebral hemangiomas: fat content as a sign of aggressiveness. Radiology 1990; l77 (02) 467-472
- 16 Pinto DS, Hoisala VR, Gupta P, Sarkar P. Aggressive vertebral body hemangioma causing compressive myelopathy: two case reports. J Orthop Case Rep 2017; 7 (02) 7-10
- 17 Friedman DP. Symptomatic vertebral hemangiomas: MR findings. AJR Am J Roentgenol 1996; 167 (02) 359-364
- 18 Leeds NE, Kumar AJ, Zhou XJ, McKinnon GC. Magnetic resonance imaging of benign spinal lesions simulating metastasis: role of diffusion-weighted imaging. Top Magn Reson Imaging 2000; 11 (04) 224-234
- 19 Zajick Jr DC, Morrison WB, Schweitzer ME, Parellada JA, Carrino JA. Benign and malignant processes: normal values and differentiation with chemical shift MR imaging in vertebral marrow. Radiology 2005; 237 (02) 590-596
- 20 Laredo JD, Reizine D, Bard M, Merland JJ. Vertebral hemangiomas: radiologic evaluation. Radiology 1986; 161 (01) 183-189
- 21 Park SK, Lee IS, Choi JY. , et al. CT and MRI of fibrous dysplasia of the spine. Br J Radiol 2012; 85 (1015): 996-1001
- 22 Kwon JW, Chung HW, Cho EY. , et al. MRI findings of giant cell tumors of the spine. AJR Am J Roentgenol 2007; 189 (01) 246-250
- 23 Kyriakos M. Benign notochordal lesions of the axial skeleton: a review and current appraisal. Skeletal Radiol 2011; 40 (09) 1141-1152
- 24 Pavlovic S, Valyi-Nagy T, Profirovic J, David O. Fine-needle aspiration of brown tumor of bone: cytologic features with radiologic and histologic correlation. Diagn Cytopathol 2009; 37 (02) 136-139
- 25 Hong WS, Sung MS, Chun KA. , et al. Emphasis on the MR imaging findings of brown tumor: a report of five cases. Skeletal Radiol 2011; 40 (02) 205-213
- 26 Galgano MA, Goulart CR, Iwenofu H, Chin LS, Lavelle W, Mendel E. Osteoblastomas of the spine: a comprehensive review. Neurosurg Focus 2016; 41 (02) E4
- 27 Chakarun CJ, Forrester DM, Gottsegen CJ, Patel DB, White EA, Matcuk Jr GR. Giant cell tumor of bone: review, mimics, and new developments in treatment. Radiographics 2013; 33 (01) 197-211
- 28 Zileli M, Isik HS, Ogut FE, Is M, Cagli S, Calli C. Aneurysmal bone cysts of the spine. Eur Spine J 2013; 22 (03) 593-601
- 29 Kumar R, Guinto Jr FC, Madewell JE, David R, Shirkhoda A. Expansile bone lesions of the vertebra. Radiographics 1988; 8 (04) 749-769
- 30 Papakonstantinou O, Athanassopoulou A, Passomenos D. , et al. Recurrent vertebral hydatid disease: spectrum of MR imaging features. Singapore Med J 2011; 52 (06) 440-445
- 31 Lefere M, Larbi A, Malghem J, Vande Berg B, Dallaudière B. Vertebral sarcoidosis: long-term follow-up with MRI. Skeletal Radiol 2014; 43 (08) 1185-1190
- 32 Albano D, Patti C, La Grutta L. , et al. Comparison between whole-body MRI with diffusion-weighted imaging and PET/CT in staging newly diagnosed FDG-avid lymphomas. Eur J Radiol 2016; 85 (02) 313-318
- 33 Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 2007; 188 (06) 1622-1635
- 34 Neubauer H, Evangelista L, Hassold N. , et al. Diffusion-weighted MRI for detection and differentiation of musculoskeletal tumorous and tumor-like lesions in pediatric patients. World J Pediatr 2012; 8 (04) 342-349
- 35 Pekcevik Y, Kahya MO, Kaya A. Diffusion-weighted magnetic resonance imaging in the diagnosis of bone tumors: preliminary results. J Clin Imaging Sci 2013; 3: 63
- 36 Ginat DT, Mangla R, Yeaney G, Johnson M, Ekholm S. Diffusion-weighted imaging for differentiating benign from malignant skull lesions and correlation with cell density. AJR Am J Roentgenol 2012; 198 (06) W597–601
- 37 Albano D, Patti C, Lagalla R, Midiri M, Galia M. Whole-body MRI, FDG-PET/CT, and bone marrow biopsy, for the assessment of bone marrow involvement in patients with newly diagnosed lymphoma. J Magn Reson Imaging 2017; 45 (04) 1082-1089
- 38 Reichardt W, Juettner E, Uhl M, Elverfeldt DV, Kontny U. Diffusion-weighted imaging as predictor of therapy response in an animal model of Ewing sarcoma. Invest Radiol 2009; 44 (05) 298-303
- 39 Amin WM, Kotb HT, Abdel-Kerim AA, Barakat MS, El-Malky AA, Fadel SH. Diffusion-weighted MRI and in-phase/opposed-phase sequences in the assessment of bone tumors. J Magn Reson Imaging 2016; 44 (03) 565-572
- 40 Douis H, Jeys L, Grimer R, Vaiyapuri S, Davies AM. Is there a role for diffusion-weighted MRI (DWI) in the diagnosis of central cartilage tumors?. Skeletal Radiol 2015; 44 (07) 963-969
- 41 Goldenberg RR, Campbell CJ, Bonfiglio M. Giant-cell tumor of bone. An analysis of two hundred and eighteen cases. J Bone Joint Surg Am 1970; 52 (04) 619-664
- 42 Douis H, Singh L, Saifuddin A. MRI differentiation of low-grade from high-grade appendicular chondrosarcoma. Eur Radiol 2014; 24 (01) 232-240
- 43 Pamir MN, Ozduman K. Analysis of radiological features relative to histopathology in 42 skull-base chordomas and chondrosarcomas. Eur J Radiol 2006; 58 (03) 461-470
- 44 Müller U, Kubik-Huch RA, Ares C. , et al. Is there a role for conventional MRI and MR diffusion-weighted imaging for distinction of skull base chordoma and chondrosarcoma?. Acta Radiol 2016; 57 (02) 225-232
- 45 Yeom KW, Lober RM, Mobley BC. , et al. Diffusion-weighted MRI: distinction of skull base chordoma from chondrosarcoma. AJNR Am J Neuroradiol 2013; 34 (05) 1056-1061 , S1
- 46 Laredo JD, Lakhdari K, Bellaïche L, Hamze B, Janklewicz P, Tubiana JM. Acute vertebral collapse: CT findings in benign and malignant nontraumatic cases. Radiology 1995; 194 (01) 41-48
- 47 Jung HS, Jee WH, McCauley TR, Ha KY, Choi KH. Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics 2003; 23 (01) 179-187
- 48 Cui FZ, Cui JL, Wang SL. , et al. Signal characteristics of normal adult bone marrow in whole-body diffusion-weighted imaging. Acta Radiol 2016; 57 (10) 1230-1237
- 49 Lavdas I, Rockall AG, Castelli F. , et al. Apparent diffusion coefficient of normal abdominal organs and bone marrow from whole-body DWI at 1.5 T: the effect of sex and age. AJR Am J Roentgenol 2015; 205 (02) 242-250
- 50 Dietrich O, Geith T, Reiser MF, Baur-Melnyk A. Diffusion imaging of the vertebral bone marrow. NMR Biomed 2017; 30 (03) 30
- 51 Druschel C, Disch AC, Melcher I. , et al. Surgical management of recurrent thoracolumbar spinal sarcoma with 4-level total en bloc spondylectomy: description of technique and report of two cases. Eur Spine J 2012; 21 (01) 1-9
- 52 Devlin VJ, Williams DA. Decision making and perioperative care of the patient. In: Margulies JY, Aebi M, Farcy JP. , eds. Revision Spine Surgery. St. Louis, MO: Mosby; 1999: 297-319
- 53 Saifuddin A, Twinn P, Emanuel R, Cannon SR. An audit of MRI for bone and soft-tissue tumours performed at referral centres. Clin Radiol 2000; b; 55 (07) 537-541
- 54 Seeger LL, Widoff BE, Bassett LW, Rosen G, Eckardt JJ. Preoperative evaluation of osteosarcoma: value of gadopentetate dimeglumine-enhanced MR imaging. AJR Am J Roentgenol 1991; 157 (02) 347-351
- 55 Khaw FM, Worthy SA, Gibson MJ, Gholkar A. The appearance on MRI of vertebrae in acute compression of the spinal cord due to metastases. J Bone Joint Surg Br 1999; 81 (05) 830-834
- 56 Guzik G. The correspondence between magnetic resonance images and the clinical and intraoperative status of patients with spinal tumors. Curr Med Imaging Rev 2016; 12 (02) 149-155
- 57 James SL, Panicek DM, Davies AM. Bone marrow oedema associated with benign and malignant bone tumours. Eur J Radiol 2008; 67 (01) 11-21
- 58 James SL, Hughes RJ, Ali KE, Saifuddin A. MRI of bone marrow oedema associated with focal bone lesions. Clin Radiol 2006; 61 (12) 1003-1009
- 59 Onikul E, Fletcher BD, Parham DM, Chen G. Accuracy of MR imaging for estimating intraosseous extent of osteosarcoma. AJR Am J Roentgenol 1996; 167 (05) 1211-1215
- 60 Kroon HM, Bloem JL, Holscher HC, van der Woude HJ, Reijnierse M, Taminiau AHM. MR imaging of edema accompanying benign and malignant bone tumors. Skeletal Radiol 1994; 23 (04) 261-269
- 61 Lang P, Honda G, Roberts T. , et al. Musculoskeletal neoplasm: perineoplastic edema versus tumor on dynamic postcontrast MR images with spatial mapping of instantaneous enhancement rates. Radiology 1995; 197 (03) 831-839
- 62 Orguc S, Arkun R. Primary tumors of the spine. Semin Musculoskelet Radiol 2014; 18 (03) 280-299
- 63 Michaelides M, Pantziara M, Petridou E, Iacovou E, Ioannides C. Spinal osteoid osteoma progressed to osteoblastoma with paraspinal soft tissue mass: a unique presentation. Skeletal Radiol 2017; 46 (03) 379-383
- 64 Sairyo K, Katoh S, Takata Y. , et al. MRI signal changes of the pedicle as an indicator for early diagnosis of spondylolysis in children and adolescents: a clinical and biomechanical study. Spine 2006; 31 (02) 206-211
- 65 Lanza E, Thouvenin Y, Viala P. , et al. Osteoid osteoma treated by percutaneous thermal ablation: when do we fail? A systematic review and guidelines for future reporting. Cardiovasc Intervent Radiol 2014; 37 (06) 1530-1539
- 66 Silvestri E, Barile A, Albano D. , et al. Interventional therapeutic procedures in the musculoskeletal system: an Italian Survey by the Italian College of Musculoskeletal Radiology. Radiol Med (Torino) 2018; 123 (04) 314-321
- 67 Vanderschueren GM, Taminiau AH, Obermann WR, van den Berg-Huysmans AA, Bloem JL, van Erkel AR. The healing pattern of osteoid osteomas on computed tomography and magnetic resonance imaging after thermocoagulation. Skeletal Radiol 2007; 36 (09) 813-821
- 68 Kim DH, Yoo HJ, Hong SH, Choi JY, Chae HD, Chung BM. Differentiation of acute osteoporotic and malignant vertebral fractures by quantification of fat fraction with a Dixon MRI sequence. AJR Am J Roentgenol 2017; 209 (06) 1331-1339
- 69 Baik JS, Jung JY, Jee WH. , et al. Differentiation of focal indeterminate marrow abnormalities with multiparametric MRI. J Magn Reson Imaging 2017; 46 (01) 49-60
- 70 Lang N, Su MY, Xing X, Yu HJ, Yuan H. Morphological and dynamic contrast enhanced MR imaging features for the differentiation of chordoma and giant cell tumors in the Axial Skeleton. J Magn Reson Imaging 2017; 45 (04) 1068-1075
- 71 Lang N, Su MY, Yu HJ, Lin M, Hamamura MJ, Yuan H. Differentiation of myeloma and metastatic cancer in the spine using dynamic contrast-enhanced MRI. Magn Reson Imaging 2013; 31 (08) 1285-1291
- 72 Lang N, Yuan H, Yu HJ, Su MY. Diagnosis of spinal lesions using heuristic and pharmacokinetic parameters measured by dynamic contrast-enhanced MRI. Acad Radiol 2017; 24 (07) 867-875
- 73 Lang N, Su MY, Yu HJ, Yuan H. Differentiation of tuberculosis and metastatic cancer in the spine using dynamic contrast-enhanced MRI. Eur Spine J 2015; 24 (08) 1729-1737
- 74 Santos P, Peck KK, Arevalo-Perez J. , et al. T1-Weighted dynamic contrast-enhanced MR perfusion imaging characterizes tumor response to radiation therapy in chordoma. AJNR Am J Neuroradiol 2017; 38 (11) 2210-2216
- 75 Alexiou E, Georgoulias P, Valotassiou V, Georgiou E, Fezoulidis I, Vlychou M. Multifocal septic osteomyelitis mimicking skeletal metastatic disease in a patient with prostate cancer. Hell J Nucl Med 2015; 18 (01) 77-78
- 76 Zheng CY, Liu DX, Luo SW, Du SX. Imaging presentation highly manifested as tuberculosis in a case of spinal metastatic carcinoma. Orthopedics 2011; 34 (08) e436-e438
- 77 Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology 2016; 281 (03) 690-707
- 78 Zheng S, Dong Y, Miao Y. , et al. Differentiation of osteolytic metastases and Schmorl's nodes in cancer patients using dual-energy CT: advantage of spectral CT imaging. Eur J Radiol 2014; 83 (07) 1216-1221
- 79 Yuan Y, Zhang Y, Lang N, Li J, Yuan H. Differentiating malignant vertebral tumours from non-malignancies with CT spectral imaging: a preliminary study. Eur Radiol 2015; 25 (10) 2945-2950
- 80 Dong Y, Zheng S, Machida H. , et al. Differential diagnosis of osteoblastic metastases from bone islands in patients with lung cancer by single-source dual-energy CT: advantages of spectral CT imaging. Eur J Radiol 2015; 84 (05) 901-907
- 81 Thomas C, Schabel C, Krauss B. , et al. Dual-energy CT: virtual calcium subtraction for assessment of bone marrow involvement of the spine in multiple myeloma. AJR Am J Roentgenol 2015; 204 (03) W324–331
- 82 Chen H, Jia M, Xu W. Malignant bone tumor intramedullary invasion: evaluation with dual-energy computed tomography in a rabbit model. J Comput Assist Tomogr 2015; 39 (01) 70-74