CC BY 4.0 · TH Open 2018; 02(04): e445-e454
DOI: 10.1055/s-0038-1676813
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Use of Targeted High-Throughput Sequencing for Genetic Classification of Patients with Bleeding Diathesis and Suspected Platelet Disorder

Oliver Andres
1   University Children's Hospital, University of Würzburg, Würzburg, Germany
,
Eva-Maria König
2   Institute of Human Genetics, University of Würzburg, Würzburg, Germany
,
Karina Althaus
3   Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
4   Institute for Transfusion Medicine, University of Greifswald, Greifswald, Germany
,
Tamam Bakchoul
3   Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
4   Institute for Transfusion Medicine, University of Greifswald, Greifswald, Germany
,
Peter Bugert
5   DRK-Blutspendedienst Baden-Württemberg-Hessen, Institute for Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany
,
Stefan Eber
6   University Children's Hospital, Technical University Munich, Munich, Germany
,
Ralf Knöfler
7   Department of Pediatrics, Carl Gustav Carus University Hospital, Dresden, Germany
,
Erdmute Kunstmann
2   Institute of Human Genetics, University of Würzburg, Würzburg, Germany
,
Georgi Manukjan
8   Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
,
Oliver Meyer
9   Institute for Transfusion Medicine, Charité—Universitätsmedizin Berlin, Berlin, Germany
,
Gabriele Strauß
10   Department for Pediatric Oncology and Hematology, HELIOS Klinikum Berlin-Buch, Berlin, Germany
,
Werner Streif
11   Department of Pediatrics, Medical University Innsbruck, Innsbruck, Austria
,
Thomas Thiele
4   Institute for Transfusion Medicine, University of Greifswald, Greifswald, Germany
,
Verena Wiegering
1   University Children's Hospital, University of Würzburg, Würzburg, Germany
,
Eva Klopocki
2   Institute of Human Genetics, University of Würzburg, Würzburg, Germany
,
Harald Schulze
8   Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
,
on Behalf of the THROMKIDplus Study Group of the Society of Paediatric Oncology Haematology (Gesellschaft für Pädiatrische Onkologie und Hämatologie, GPOH) and the Society of Thrombosis Haemostasis Research (Gesellschaft für Thrombose- und Hämostaseforschung, GTH) › Author Affiliations
Further Information

Publication History

17 July 2018

19 November 2018

Publication Date:
30 December 2018 (online)

Abstract

Inherited platelet disorders (IPD) form a rare and heterogeneous disease entity that is present in about 8% of patients with non-acquired bleeding diathesis. Identification of the defective cellular pathway is an important criterion for stratifying the patient's individual risk profile and for choosing personalized therapeutic options. While costs of high-throughput sequencing technologies have rapidly declined over the last decade, molecular genetic diagnosis of bleeding and platelet disorders is getting more and more suitable within the diagnostic algorithms. In this study, we developed, verified, and evaluated a targeted, panel-based next-generation sequencing approach comprising 59 genes associated with IPD for a cohort of 38 patients with a history of recurrent bleeding episodes and functionally suspected, but so far genetically undefined IPD. DNA samples from five patients with genetically defined IPD with disease-causing variants in WAS, RBM8A, FERMT3, P2YR12, and MYH9 served as controls during the validation process. In 40% of 35 patients analyzed, we were able to finally detect 15 variants, eight of which were novel, in 11 genes, ACTN1, AP3B1, GFI1B, HPS1, HPS4, HPS6, MPL, MYH9, TBXA2R, TPM4, and TUBB1, and classified them according to current guidelines. Apart from seven variants of uncertain significance in 11% of patients, nine variants were classified as likely pathogenic or pathogenic providing a molecular diagnosis for 26% of patients. This report also emphasizes on potentials and pitfalls of this tool and prospectively proposes its rational implementation within the diagnostic algorithms of IPD.

Supplementary Material

 
  • References

  • 1 Nurden AT, Nurden P. Congenital platelet disorders and understanding of platelet function. Br J Haematol 2014; 165 (02) 165-178
  • 2 Balduini CL, Melazzini F, Pecci A. Inherited thrombocytopenias - recent advances in clinical and molecular aspects. Platelets 2017; 28 (01) 3-13
  • 3 Sivapalaratnam S, Collins J, Gomez K. Diagnosis of inherited bleeding disorders in the genomic era. Br J Haematol 2017; 179 (03) 363-376
  • 4 Nurden AT, Freson K, Seligsohn U. Inherited platelet disorders. Haemophilia 2012; 18 (Suppl. 04) 154-160
  • 5 Noris P, Perrotta S, Bottega R. , et al. Clinical and laboratory features of 103 patients from 42 Italian families with inherited thrombocytopenia derived from the monoallelic Ala156Val mutation of GPIbα (Bolzano mutation). Haematologica 2012; 97 (01) 82-88
  • 6 Monteferrario D, Bolar NA, Marneth AE. , et al. A dominant-negative GFI1B mutation in the gray platelet syndrome. N Engl J Med 2014; 370 (03) 245-253
  • 7 Schulze H, Schlagenhauf A, Manukjan G. , et al. Recessive grey platelet-like syndrome with unaffected erythropoiesis in the absence of the splice isoform GFI1B-p37. Haematologica 2017; 102 (09) e375-e378
  • 8 Harrison P, Lordkipanidzé M. Clinical tests of platelet function. In: Platelets. 3rd ed. New York: Academic Press; 2013: 519-545
  • 9 Harrison P, Mackie I, Mumford A. , et al; British Committee for Standards in Haematology. Guidelines for the laboratory investigation of heritable disorders of platelet function. Br J Haematol 2011; 155 (01) 30-44
  • 10 Knöfler R, Eberl W, Schulze H. , et al. [Diagnosis of inherited diseases of platelet function. Interdisciplinary S2K guideline of the Permanent Paediatric Committee of the Society of Thrombosis and Haemostasis Research (GTH e. V.)]. Hamostaseologie 2014; 34 (03) 201-212
  • 11 Gresele P. ; Subcommittee on Platelet Physiology of the International Society on Thrombosis and Hemostasis. Diagnosis of inherited platelet function disorders: guidance from the SSC of the ISTH. J Thromb Haemost 2015; 13 (02) 314-322
  • 12 Gresele P, Harrison P, Bury L. , et al. Diagnosis of suspected inherited platelet function disorders: results of a worldwide survey. J Thromb Haemost 2014; 12 (09) 1562-1569
  • 13 Wetterstrand K. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) Available at: www.genome.gov/sequencingcostsdata . Accessed July 1, 2018
  • 14 Gresele P, Bury L, Falcinelli E. Inherited platelet function disorders: algorithms for phenotypic and genetic investigation. Semin Thromb Hemost 2016; 42 (03) 292-305
  • 15 Mannhalter C. [New developments in molecular biological diagnostic]. Hamostaseologie 2017; 37 (02) 138-151
  • 16 Lentaigne C, Freson K, Laffan MA, Turro E, Ouwehand WH. ; BRIDGE-BPD Consortium and the ThromboGenomics Consortium. Inherited platelet disorders: toward DNA-based diagnosis. Blood 2016; 127 (23) 2814-2823
  • 17 Simeoni I, Stephens JC, Hu F. , et al. A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders. Blood 2016; 127 (23) 2791-2803
  • 18 Bariana TK, Ouwehand WH, Guerrero JA, Gomez K. ; BRIDGE Bleeding, Thrombotic and Platelet Disorders and ThromboGenomics Consortia. Dawning of the age of genomics for platelet granule disorders: improving insight, diagnosis and management. Br J Haematol 2017; 176 (05) 705-720
  • 19 Westbury SK, Turro E, Greene D. , et al; BRIDGE-BPD Consortium. Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders. Genome Med 2015; 7 (01) 36
  • 20 Fletcher SJ, Johnson B, Lowe GC. , et al; UK Genotyping and Phenotyping of Platelets Study Group. SLFN14 mutations underlie thrombocytopenia with excessive bleeding and platelet secretion defects. J Clin Invest 2015; 125 (09) 3600-3605
  • 21 Leo VC, Morgan NV, Bem D. , et al; UK GAPP Study Group. Use of next-generation sequencing and candidate gene analysis to identify underlying defects in patients with inherited platelet function disorders. J Thromb Haemost 2015; 13 (04) 643-650
  • 22 Johnson B, Lowe GC, Futterer J. , et al; UK GAPP Study Group. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects. Haematologica 2016; 101 (10) 1170-1179
  • 23 Leinøe E, Zetterberg E, Kinalis S. , et al. Application of whole-exome sequencing to direct the specific functional testing and diagnosis of rare inherited bleeding disorders in patients from the Öresund Region, Scandinavia. Br J Haematol 2017; 179 (02) 308-322
  • 24 Bastida JM, Lozano ML, Benito R. , et al. Introducing high-throughput sequencing into mainstream genetic diagnosis practice in inherited platelet disorders. Haematologica 2018; 103 (01) 148-162
  • 25 Althaus K, Najm J, Greinacher A. MYH9 related platelet disorders - often unknown and misdiagnosed. Klin Padiatr 2011; 223 (03) 120-125
  • 26 Andres O, Henning K, Strauß G, Pflug A, Manukjan G, Schulze H. Diagnosis of platelet function disorders: a standardized, rational, and modular flow cytometric approach. Platelets 2018; 29 (04) 347-356
  • 27 Crazzolara R, Maurer K, Schulze H, Zieger B, Zustin J, Schulz AS. A new mutation in the KINDLIN-3 gene ablates integrin-dependent leukocyte, platelet, and osteoclast function in a patient with leukocyte adhesion deficiency-III. Pediatr Blood Cancer 2015; 62 (09) 1677-1679
  • 28 Balduini CL, Pecci A, Noris P. Diagnosis and management of inherited thrombocytopenias. Semin Thromb Hemost 2013; 39 (02) 161-171
  • 29 Richards S, Aziz N, Bale S. , et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17 (05) 405-424
  • 30 Fontana S, Parolini S, Vermi W. , et al. Innate immunity defects in Hermansky-Pudlak type 2 syndrome. Blood 2006; 107 (12) 4857-4864
  • 31 Kelley MJ, Jawien W, Ortel TL, Korczak JF. Mutation of MYH9, encoding non-muscle myosin heavy chain A, in May-Hegglin anomaly. Nat Genet 2000; 26 (01) 106-108
  • 32 Auer PL, Teumer A, Schick U. , et al. Rare and low-frequency coding variants in CXCR2 and other genes are associated with hematological traits. Nat Genet 2014; 46 (06) 629-634
  • 33 van den Oudenrijn S, Bruin M, Folman CC. , et al. Mutations in the thrombopoietin receptor, Mpl, in children with congenital amegakaryocytic thrombocytopenia. Br J Haematol 2000; 110 (02) 441-448
  • 34 Andres O, Wiegering V, König EM. , et al. A novel two-nucleotide deletion in HPS6 affects mepacrine uptake and platelet dense granule secretion in a family with Hermansky-Pudlak syndrome. Pediatr Blood Cancer 2017 64. (05); doi: 10.1002/pbc.26320
  • 35 Miyazaki K, Kunishima S, Fujii W, Higashihara M. Identification of three in-frame deletion mutations in MYH9 disorders suggesting an important hot spot for small rearrangements in MYH9 exon 24. Eur J Haematol 2009; 83 (03) 230-234
  • 36 Bottega R, Marconi C, Faleschini M. , et al. ACTN1-related thrombocytopenia: identification of novel families for phenotypic characterization. Blood 2015; 125 (05) 869-872
  • 37 Kunishima S, Okuno Y, Yoshida K. , et al. ACTN1 mutations cause congenital macrothrombocytopenia. Am J Hum Genet 2013; 92 (03) 431-438
  • 38 Oh J, Bailin T, Fukai K. , et al. Positional cloning of a gene for Hermansky-Pudlak syndrome, a disorder of cytoplasmic organelles. Nat Genet 1996; 14 (03) 300-306
  • 39 Freson K, De Vos R, Wittevrongel C. , et al. The TUBB1 Q43P functional polymorphism reduces the risk of cardiovascular disease in men by modulating platelet function and structure. Blood 2005; 106 (07) 2356-2362
  • 40 Navarro-Núñez L, Lozano ML, Rivera J. , et al. The association of the beta1-tubulin Q43P polymorphism with intracerebral hemorrhage in men. Haematologica 2007; 92 (04) 513-518
  • 41 Klopocki E, Schulze H, Strauss G. , et al. Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia-absent radius syndrome. Am J Hum Genet 2007; 80 (02) 232-240
  • 42 Albers CA, Paul DS, Schulze H. , et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat Genet 2012; 44 (04) 435-439 , S1–S2
  • 43 Huizing M, Malicdan MCV, Gochuico BR. , et al. Hermansky-Pudlak Syndrome. In: GeneReviews((R)). Seattle, WA: University of Washington; 1993. –2018
  • 44 Manukjan G, Bösing H, Schmugge M, Strauß G, Schulze H. Impact of genetic variants on haematopoiesis in patients with thrombocytopenia absent radii (TAR) syndrome. Br J Haematol 2017; 179 (04) 606-617
  • 45 Pecci A, Ma X, Savoia A, Adelstein RS. MYH9: structure, functions and role of non-muscle myosin IIA in human disease. Gene 2018; 664: 152-167
  • 46 Stritt S, Nurden P, Turro E. , et al; BRIDGE-BPD Consortium. A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss. Blood 2016; 127 (23) 2903-2914
  • 47 Melazzini F, Palombo F, Balduini A. , et al. Clinical and pathogenic features of ETV6-related thrombocytopenia with predisposition to acute lymphoblastic leukemia. Haematologica 2016; 101 (11) 1333-1342
  • 48 Rehm HL, Bale SJ, Bayrak-Toydemir P. , et al; Working Group of the American College of Medical Genetics and Genomics Laboratory Quality Assurance Committee. ACMG clinical laboratory standards for next-generation sequencing. Genet Med 2013; 15 (09) 733-747
  • 49 Schweizerisches Konsensusdokument der Schweizerischer Gesellschaft für Medizinische Genetik (SGMG). Bonnes pratiques - Für die klinische Anwendung der Hochdurchsatz-Sequenzierung (HDS). Schweizerische Gesellschaft für Medizinische Genetik; Version 1, 2014. Available at: http://sgmg.ch/wordpress/wp-content/uploads/2015/12/Bonnes_Pratiques_BAG.pdf
  • 50 Matthijs G, Souche E, Alders M. , et al; EuroGentest; European Society of Human Genetics. Guidelines for diagnostic next-generation sequencing. Eur J Hum Genet 2016; 24 (01) 2-5
  • 51 Deutsche Gesellschaft für Humangenetik. S1 Leitlinie: Molekulargenetische Diagnostik mit Hochdurchsatz-Verfahren der Keimbahn, beispielsweise mit Next-Generation Sequencing. medgen 2018;30(02):278-292, AWMF Register-Nr. 078/016. Available at: https://doi.org/10.1007/s11825-018-0189-z
  • 52 Gargis AS, Kalman L, Berry MW. , et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol 2012; 30 (11) 1033-1036
  • 53 Tilak MK, Botero-Castro F, Galtier N, Nabholz B. Illumina library preparation for sequencing the GC-rich fraction of heterogeneous genomic DNA. Genome Biol Evol 2018; 10 (02) 616-622
  • 54 Freson K, Turro E. High-throughput sequencing approaches for diagnosing hereditary bleeding and platelet disorders. J Thromb Haemost 2017; 15 (07) 1262-1272