J Knee Surg 2020; 33(04): 357-364
DOI: 10.1055/s-0039-1677813
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Gender Disparity between Donor Sites of the Trochlea Used for Autologous Osteoarticular Transfer: An MRI Analysis

Kelly M. Rogers
1   Eastern Virginia Medical School, Norfolk, Virginia
,
Daniel C. Berman
1   Eastern Virginia Medical School, Norfolk, Virginia
,
Justin W. Griffin
2   Jordan-Young Institute, Orthopaedic Surgery and Sports Medicine, Virginia Beach, Virginia
,
Kevin F. Bonner
2   Jordan-Young Institute, Orthopaedic Surgery and Sports Medicine, Virginia Beach, Virginia
› Author Affiliations
Further Information

Publication History

14 August 2018

16 December 2018

Publication Date:
06 February 2019 (online)

Abstract

The purpose of this study was to assess potential gender differences in size of the lateral and medial trochlea of the male and female knee as well as the variation within gender of potential osteochondral autograft transfer (OAT) donor site area. Two hundred and twelve skeletally mature patients, 106 males and 106 females, who underwent a 3T magnetic resonance imaging of the knee for a variety of indications were utilized for analysis. Exclusion criteria included degenerative arthritis, trochlear dysplasia, and poor image quality. Medial and lateral femoral trochlear cartilage width was obtained using a linear radiologic measurement tool. Widths were measured from a reproducible anatomic location representing the maximal trochlear dimension in a region where donor plugs are commonly harvested. Trochlear width was also plotted as a function of patient height. Statistical analysis was performed using a two-sample t-test. The mean and standard deviation of the lateral trochlear cartilage width (mm) for males and females were 23.38 +/− 2.14 and 20.44 +/− 2.16, respectively (p < 0.00001). The mean and standard deviation of the medial trochlear cartilage width (mm) for males and females were 14.16 +/− 2.17 and 11.78 +/− 2.03, respectively (p < 0.00001). The overall range in trochlear width for both the lateral and medial sides was 22.22 and 19.73 mm for males and females, respectively. A graft measuring 10 mm could represent as little as 34% of the lateral trochlea in males versus as much as 65% in females. Our results indicate that donor OAT plug diameter relative to available trochlear cartilage width will vary significantly both between genders and individual patients. Trochlear width variability and its potential implications on donor site morbidity may be an important consideration when contemplating osteochondral plug harvest for OAT or other indications. The level of evidence is IV.

 
  • References

  • 1 Camp CL, Stuart MJ, Krych AJ. Current concepts of articular cartilage restoration techniques in the knee. Sports Health 2014; 6 (03) 265-273
  • 2 Creighton RA, Cole BJ. Autologous osteochondral transplantation: background, surgical indications, and results. In: Scott WN. , ed. Surgery of the Knee. Philadelphia: Churchill Livingstone/Elsevier; 2006
  • 3 Al-Shaikh RA, Chou LB, Mann JA, Dreeben SM, Prieskorn D. Autologous osteochondral grafting for talar cartilage defects. Foot Ankle Int 2002; 23 (05) 381-389
  • 4 Camp CL, Barlow JD, Krych AJ. Transplantation of a tibial osteochondral allograft to restore a large glenoid osteochondral defect. Orthopedics 2015; 38 (02) e147-e152
  • 5 Hayashi K, Ochi M, Uchio Y, Takao M, Kawasaki K, Yamagami N. A new surgical technique for treating bilateral Freiberg disease. Arthroscopy 2002; 18 (06) 660-664
  • 6 Iwasaki N, Kato H, Kamishima T, Suenaga N, Minami A. Donor site evaluation after autologous osteochondral mosaicplasty for cartilaginous lesions of the elbow joint. Am J Sports Med 2007; 35 (12) 2096-2100
  • 7 Kennedy JG, Murawski CD. The treatment of osteochondral lesions of the talus with autologous osteochondral transplantation and bone marrow aspirate concentrate: surgical technique. Cartilage 2011; 2 (04) 327-336
  • 8 Khanna V, Tushinski DM, Drexler M. , et al. Cartilage restoration of the hip using fresh osteochondral allograft: resurfacing the potholes. Bone Joint J 2014; 96-B (11, Supple A): 11-16
  • 9 Chen E, Sgaglione NA. Osteochondral autograft plug transfer. In: Scott WN Scott, ed. Surgery of the Knee. Philadelphia: Churchill Livingstone/Elsevier; 2006
  • 10 Hangody L, Kish G, Kárpáti Z, Szerb I, Udvarhelyi I. Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report. Knee Surg Sports Traumatol Arthrosc 1997; 5 (04) 262-267
  • 11 Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am 2003; 85-A (Suppl. 02) 25-32
  • 12 Bexkens R, Ogink PT, Doornberg JN. , et al. Donor-site morbidity after osteochondral autologous transplantation for osteochondritis dissecans of the capitellum: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 2017; 25 (07) 2237-2246
  • 13 Hangody L, Ráthonyi GK, Duska Z, Vásárhelyi G, Füles P, Módis L. Autologous osteochondral mosaicplasty. Surgical technique. J Bone Joint Surg Am 2004; 86-A (Suppl. 01) 65-72
  • 14 Nakagawa Y, Mukai S, Setoguchi Y, Goto T, Furukawa T, Nakamura T. Clinical outcomes of donor sites after osteochondral graft harvest from healthy knees. Orthop J Sports Med 2017; 5 (10) 2325967117732525
  • 15 Andrade R, Vasta S, Pereira R. , et al. Knee donor-site morbidity after mosaicplasty - a systematic review. J Exp Orthop 2016; 3 (01) 31
  • 16 Hangody L, Dobos J, Baló E, Pánics G, Hangody LR, Berkes I. Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study. Am J Sports Med 2010; 38 (06) 1125-1133
  • 17 Kim YS, Park EH, Kim YC, Koh YG, Lee JW. Factors associated with the clinical outcomes of the osteochondral autograft transfer system in osteochondral lesions of the talus: second-look arthroscopic evaluation. Am J Sports Med 2012; 40 (12) 2709-2719
  • 18 Nishimura A, Morita A, Fukuda A, Kato K, Sudo A. Functional recovery of the donor knee after autologous osteochondral transplantation for capitellar osteochondritis dissecans. Am J Sports Med 2011; 39 (04) 838-842
  • 19 Paul J, Sagstetter A, Kriner M, Imhoff AB, Spang J, Hinterwimmer S. Donor-site morbidity after osteochondral autologous transplantation for lesions of the talus. J Bone Joint Surg Am 2009; 91 (07) 1683-1688
  • 20 Reddy S, Pedowitz DI, Parekh SG, Sennett BJ, Okereke E. The morbidity associated with osteochondral harvest from asymptomatic knees for the treatment of osteochondral lesions of the talus. Am J Sports Med 2007; 35 (01) 80-85
  • 21 Weigelt L, Siebenlist S, Hensler D, Imhoff AB, Vogt S. Treatment of osteochondral lesions in the elbow: results after autologous osteochondral transplantation. Arch Orthop Trauma Surg 2015; 135 (05) 627-634
  • 22 Arthrex. Single use OATS: Surgical technique. United States patent US 5,785,714; 5,919,196; 6,592,588; 2013
  • 23 Ali SA, Helmer R, Terk MR. Analysis of the patellofemoral region on MRI: association of abnormal trochlear morphology with severe cartilage defects. AJR Am J Roentgenol 2010; 194 (03) 721-727
  • 24 Berman D, Rogers K, Bonner K, Griffin J. Gender disparity between absolute versus relative size of condylar chondral defects: An MRI analysis. J Knee Surg. 2018. Doi: 10.1055/s-0038-1646932
  • 25 Solheim E, Hegna J, Strand T, Harlem T, Inderhaug E. Randomized study of long-term (15–17 years) outcome after microfracture versus mosaicplasty in knee articular cartilage defects. Am J Sports Med 2018; 46 (04) 826-831
  • 26 Bowland P, Ingham E, Jennings L, Fisher J. Review of the biomechanics and biotribology of osteochondral grafts used for surgical interventions in the knee. Proc Inst Mech Eng H 2015; 229 (12) 879-888
  • 27 Richter DL, Schenck Jr RC, Wascher DC, Treme G. Knee articular cartilage repair and restoration techniques: a review of the literature. Sports Health 2016; 8 (02) 153-160
  • 28 Bartha L, Hamann D, Pieper J. , et al. A clinical feasibility study to evaluate the safety and efficacy of PEOT/PBT implants for human donor site filling during mosaicplasty. Eur J Orthop Surg Traumatol 2013; 23 (01) 81-91
  • 29 Kordás G, Szabó JS, Hangody L. The effect of drill-hole length on the primary stability of osteochondral grafts in mosaicplasty. Orthopedics 2005; 28 (04) 401-404
  • 30 Simonian PT, Sussmann PS, Wickiewicz TL, Paletta GA, Warren RF. Contact pressures at osteochondral donor sites in the knee. Am J Sports Med 1998; 26 (04) 491-494
  • 31 Guettler JH, Demetropoulos CK, Yang KH, Jurist KA. Dynamic evaluation of contact pressure and the effects of graft harvest with subsequent lateral release at osteochondral donor sites in the knee. Arthroscopy 2005; 21 (06) 715-720
  • 32 Garretson III RB, Katolik LI, Verma N, Beck PR, Bach BR, Cole BJ. Contact pressure at osteochondral donor sites in the patellofemoral joint. Am J Sports Med 2004; 32 (04) 967-974
  • 33 Hitt K, Shurman II JR, Greene K. , et al. Anthropometric measurements of the human knee: correlation to the sizing of current knee arthroplasty systems. J Bone Joint Surg Am 2003; 85-A (Suppl. 04) 115-122
  • 34 Pinskerova V, Nemec K, Landor I. Gender differences in the morphology of the trochlea and the distal femur. Knee Surg Sports Traumatol Arthrosc 2014; 22 (10) 2342-2349
  • 35 Rosenstein AD, Veazey B, Shephard D, Xu KT. Gender differences in the distal femur dimensions and variation patterns in relation to TKA component sizing. Orthopedics 2008; 31 (07) 652
  • 36 Yan M, Wang J, Wang Y, Zhang J, Yue B, Zeng Y. Gender-based differences in the dimensions of the femoral trochlea and condyles in the Chinese population: correlation to the risk of femoral component overhang. Knee 2014; 21 (01) 252-256
  • 37 Ishimaru M, Hino K, Onishi Y, Iseki Y, Mashima N, Miura H. A three-dimensional computed tomography study of distal femoral morphology in Japanese patients: gender differences and component fit. Knee 2014; 21 (06) 1221-1224
  • 38 Grelsamer RP, Dubey A, Weinstein CH. Men and women have similar Q angles: a clinical and trigonometric evaluation. J Bone Joint Surg Br 2005; 87 (11) 1498-1501