J Knee Surg 2020; 33(04): 365-371
DOI: 10.1055/s-0039-1677837
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Biomechanical Properties of Bioabsorbable Fixation for Osteochondral Shell Allografts

Dimitri M. Thomas
1   The Orthopedic and Sports Medicine Center, Anne Arundel Medical Center, Annapolis, Maryland
,
James P. Stannard
2   Department of Orthopaedic Surgery, Missouri Orthopaedic Institute, University of Missouri Columbia, Columbia, Missouri
3   Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri Columbia, Columbia, Missouri
,
Ferris M. Pfeiffer
4   Department of Biological Engineering, University of Missouri, Columbia, Missouri
,
James L. Cook
2   Department of Orthopaedic Surgery, Missouri Orthopaedic Institute, University of Missouri Columbia, Columbia, Missouri
3   Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri Columbia, Columbia, Missouri
› Author Affiliations
Further Information

Publication History

19 October 2018

17 December 2018

Publication Date:
06 February 2019 (online)

Abstract

This study compares bioabsorbable nail to metal screw fixation of shell osteochondral allograft (OCAs) for compression and shear strength. Cadaveric distal femurs (n = 5) yielding six 1.5 cm shell grafts (n = 30) were used. Three different fixation methods (2.0 and 2.4 mm headed screws, and copolymer absorbable nail) were compared for statistically significant differences (p < 0.05) in contact area, contact pressure, and shear load-to-failure. No significant differences in contact areas existed among groups (224 ± 33.5 mm2; 233.9 ± 20.8 mm2, 220.6 ± 22.7 mm2; p = 0.509 for 2.4, 2.0 mm screw, and nail, respectively). No significant differences in contact pressures existed (1.7 ± 0.6 MPa/mm2, 1.5 ± 0.8 MPa/mm2, 1.4 ± 0.9 MPa/mm2; p = 0.73 for 2.4, 2.0 mm screw, and nail, respectively). Load-to-failure for each was: 280.7 ± 48.4 N for 2.4 mm screws, 245.1 ± 70.6 N for 2.0 mm screws, and 215.2 ± 39.4 N for nails. There were no statistically significant differences in load-to-failure between 2.4 and 2.0 mm screws (p = 0.29) or between 2.0 mm screws and nails (p = 0.23); however, load-to-failure in shear was significantly higher for 2.4 mm screws compared with nails (p = 0.036). Fixation of shell OCAs using a copolymer headed nail provides initial graft-recipient compression similar to fixation using 2.0 and 2.4 mm headed screws. Nails failed in shear at significantly lower load than 2.4 mm screws but not 2.0 mm screws which have proven adequate for clinical healing. This study has clinical relevance, as a copolymer bioabsorbable headed nail (SmartNail) has graft-recipient compression and shear load-to-failure properties that suggest it is viable for shell OCA fixation.

 
  • References

  • 1 Bugbee WD, Convery FR. Osteochondral allograft transplantation. Clin Sports Med 1999; 18 (01) 67-75
  • 2 Dean CS, Chahla J, Serra Cruz R, LaPrade RF. Fresh osteochondral allograft transplantation for treatment of articular cartilage defects of the knee. Arthrosc Tech 2016; 5 (01) e157-e161
  • 3 Gracitelli GC, Meric G, Pulido PA, Görtz S, De Young AJ, Bugbee WD. Fresh osteochondral allograft transplantation for isolated patellar cartilage injury. Am J Sports Med 2015; 43 (04) 879-884
  • 4 Jamali AA, Emmerson BC, Chung C, Convery FR, Bugbee WD. Fresh osteochondral allografts: results in the patellofemoral joint. Clin Orthop Relat Res 2005; (437) 176-185
  • 5 Nikolaou VS, Giannoudis PV. History of osteochondral allograft transplantation. Injury 2017; 48 (07) 1283-1286
  • 6 Sherman SL, Garrity J, Bauer K, Cook J, Stannard J, Bugbee W. Fresh osteochondral allograft transplantation for the knee: current concepts. J Am Acad Orthop Surg 2014; 22 (02) 121-133
  • 7 Krettek C, Clausen J, Omar M, Noack S, Neunaber C. Two-stage late reconstruction with a fresh large osteochondral shell allograft transplantation (FLOCSAT) for a large ostechondral defect in a non-union after a lateral tibia plateau fracture 2-year follow up. Injury 2017; 48 (07) 1309-1318
  • 8 Krettek C, Clausen JD, Bruns N, Neunaber C. [Partial and complete joint transplantation with fresh osteochondral allografts-the FLOCSAT concept]. Unfallchirurg 2017; 120 (11) 932-949
  • 9 Krettek C, Clausen JD, Neunaber C. [Complex joint reconstruction and joint transplantation with the FLOCSAT concept-planning and surgical implementation]. Unfallchirurg 2017; 120 (11) 950-960
  • 10 Gross AE, Shasha N, Aubin P. Long-term followup of the use of fresh osteochondral allografts for posttraumatic knee defects. Clin Orthop Relat Res 2005; (435) 79-87
  • 11 Assenmacher AT, Pareek A, Reardon PJ, Macalena JA, Stuart MJ, Krych AJ. Long-term outcomes after osteochondral allograft: a systematic review at long-term follow-up of 12.3 years. Arthroscopy 2016; 32 (10) 2160-2168
  • 12 Meric G, Gracitelli GC, Görtz S, De Young AJ, Bugbee WD. Fresh osteochondral allograft transplantation for bipolar reciprocal osteochondral lesions of the knee. Am J Sports Med 2015; 43 (03) 709-714
  • 13 Torga Spak R, Teitge RA. Fresh osteochondral allografts for patellofemoral arthritis: long-term followup. Clin Orthop Relat Res 2006; 444: 193-200
  • 14 Tuompo P, Arvela V, Partio EK, Rokkanen P. Osteochondritis dissecans of the knee fixed with biodegradable self-reinforced polyglycolide and polylactide rods in 24 patients. Int Orthop 1997; 21 (06) 355-360
  • 15 Chu CR, Convery FR, Akeson WH, Meyers M, Amiel D. Articular cartilage transplantation. Clinical results in the knee. Clin Orthop Relat Res 1999; (360) 159-168
  • 16 Weckström M, Parviainen M, Kiuru MJ, Mattila VM, Pihlajamäki HK. Comparison of bioabsorbable pins and nails in the fixation of adult osteochondritis dissecans fragments of the knee: an outcome of 30 knees. Am J Sports Med 2007; 35 (09) 1467-1476
  • 17 Smith RL, Carter DR, Schurman DJ. Pressure and shear differentially alter human articular chondrocyte metabolism: a review. Clin Orthop Relat Res 2004; ;(427, Suppl) S89-S95
  • 18 Barfod G, Svendsen RN. Synovitis of the knee after intraarticular fracture fixation with Biofix. Report of two cases. Acta Orthop Scand 1992; 63 (06) 680-681
  • 19 Fridén T, Rydholm U. Severe aseptic synovitis of the knee after biodegradable internal fixation. A case report. Acta Orthop Scand 1992; 63 (01) 94-97
  • 20 Convery FR, Botte MJ, Akeson WH, Meyers MH. Chondral defects of the knee. Contemp Orthop 1994; 28 (02) 101-107
  • 21 Matava MJ, Brown CD. Osteochondritis dissecans of the patella: arthroscopic fixation with bioabsorbable pins. Arthroscopy 1997; 13 (01) 124-128
  • 22 Pihlajamäki H, Böstman O, Tynninen O, Laitinen O. Long-term tissue response to bioabsorbable poly-L-lactide and metallic screws: an experimental study. Bone 2006; 39 (04) 932-937
  • 23 Lane Smith R, Trindade MCD, Ikenoue T. , et al. Effects of shear stress on articular chondrocyte metabolism. Biorheology 2000; 37 (1-2): 95-107
  • 24 Kandel RA, Gross AE, Ganel A, McDermott AG, Langer F, Pritzker KP. Histopathology of failed osteoarticular shell allografts. Clin Orthop Relat Res 1985; (197) 103-110
  • 25 Ghazavi MT, Pritzker KP, Davis AM, Gross AE. Fresh osteochondral allografts for post-traumatic osteochondral defects of the knee. J Bone Joint Surg Br 1997; 79 (06) 1008-1013
  • 26 Stoker AM, Stannard JP, Cook JL. Chondrocyte viability at time of transplantation for osteochondral allografts preserved by the Missouri Osteochondral Preservation System versus standard tissue bank protocol. J Knee Surg 2018; 31 (08) 772-780
  • 27 Oladeji LO, Cook JL, Stannard JP, Crist BD. Large fresh osteochondral allografts for the hip: growing the evidence. Hip Int 2018; 28 (03) 284-290
  • 28 Oladeji LO, Dreger TK, Pratte EL. , et al. Total knee arthroplasty versus osteochondral allograft: prevalence and risk factors following tibial plateau fractures. J Knee Surg. 2018. Doi: 10.1055/s-0038-1641593
  • 29 Oladeji LO, Stannard JP, Cook CR. , et al. Effects of autogenous bone marrow aspirate concentrate on radiographic integration of femoral condylar osteochondral allografts. Am J Sports Med 2017; 45 (12) 2797-2803