Subscribe to RSS
DOI: 10.1055/s-0039-1677840
Laboratory Diagnostics in Thrombophilia
Publication History
26 September 2018
23 December 2018
Publication Date:
31 January 2019 (online)
Abstract
A thrombophilic disorder is a hereditary or acquired condition that increases the risk of thrombosis. The most common hereditary thrombophilias that predispose to venous thrombosis in the Caucasian population are the heterozygous forms of the factor V Leiden and prothrombin G20210A mutation that are generally detected by direct DNA genotyping. Immunologic antigen assays and chromogenic or clot-based activity assays are used to identify deficiencies in the natural coagulation inhibitors antithrombin, protein C and protein S. Because pre-analytical errors and acquired causes of low antithrombin, protein C or protein S levels are considerably more common than hereditary deficiencies, all potential conditions that may lower activity levels of the natural coagulation inhibitors (e.g. concomitant liver disease, pregnancy, anticoagulant therapy) must be considered and excluded before the diagnosis of an inhibitor deficiency can be made. To avoid misclassification, the diagnosis should not be made based on a single abnormal test result. Thus, repetitive testing when the patient is not on anticoagulant therapy is mandatory to confirm the diagnosis. Screening for antiphospholipid syndrome (APS) comprises testing for lupus anticoagulants (LAs) and the presence of IgG or IgM antibodies directed against phospholipids and phospholipid-binding proteins such as β-2-glycoprotein-I. A combination of clot-based assays has been recommended to demonstrate LA activity, whereas solid-phase immunoassays allow the detection of anti-cardiolipin and anti-β-2-glycoprotein-I antibodies. The diagnosis of APS requires the persistence of antiphospholipid antibodies for at least 12 weeks together with thrombotic and/or obstetric features of APS.
Zusammenfassung
Thrombophilie bezeichnet eine genetisch bedingte oder erworbene Thromboseneigung. Bei Europäern sind Faktor V Leiden und die Prothrombin-G20210A-Mutation in jeweils heterozygoter Form die häufigsten Genvarianten, die zu venösen Thrombosen prädisponieren. Beide Mutationen werden durch direkte DNA-Genotypisierung nachgewiesen. Für den Nachweis von Mangelzuständen der physiologischen Gerinnungsinhibitoren Antithrombin, Protein C und Protein S finden immunologische Antigen-Assays und chromogene bzw. gerinnungs-basierte Aktivitäts-Assays Anwendung. Bevor die Diagnose eines Inhibitormangels gestellt wird, sind die häufiger vorkommenden sekundären Ursachen (z.B. Lebererkrankung, Schwangerschaft, Antikoagulanzientherapie) auszuschließen. Da auch präanalytische Fehler vorkommen können, ist eine Diagnose nie auf Basis einer einzigen Bestimmung zu stellen, sondern erfordert die Bestätigung durch wiederholte Testung. Die Suche nach Antiphospholipid-Antikörpern erfolgt über den Nachweis von Lupusantikoagulans und die Testung auf Cardiolipin- und β-2-Glykoprotein-I-Antikörper vom IgG- und IgM-Typ. Für den Nachweis von Lupusantikoagulans-Aktivität werden mindestens zwei unterschiedliche gerinnungs-basierte Testverfahren eingesetzt, während spezifische Immunoassays anti-Cardiolipin- und anti-β-2-Glykoprotein-I-Antikörper nachweisen. Die Diagnose eines Antiphospholipid-Syndroms erfordert die Persistenz von Antiphospholipid-Antikörpern über mindestens 12 Wochen in zeitlichem Zusammenhang mit dem Auftreten von vaskulären Thrombosen und/oder Schwangerschaftskomplikationen.
-
References
- 1 Stevens SM, Woller SC, Bauer KA. , et al. Guidance for the evaluation and treatment of hereditary and acquired thrombophilia. J Thromb Thrombolysis 2016; 41 (01) 154-164
- 2 Caspers M, Pavlova A, Driesen J. , et al. Deficiencies of antithrombin, protein C and protein S - practical experience in genetic analysis of a large patient cohort. Thromb Haemost 2012; 108 (02) 247-257
- 3 Bucciarelli P, Passamonti SM, Biguzzi E. , et al. Low borderline plasma levels of antithrombin, protein C and protein S are risk factors for venous thromboembolism. J Thromb Haemost 2012; 10 (09) 1783-1791
- 4 Di Minno MN, Dentali F, Veglia F, Russolillo A, Tremoli E, Ageno W. Antithrombin levels and the risk of a first episode of venous thromboembolism: a case-control study. Thromb Haemost 2013; 109 (01) 167-169
- 5 van Vlijmen EF, Veeger NJ, Middeldorp S. , et al. Thrombotic risk during oral contraceptive use and pregnancy in women with factor V Leiden or prothrombin mutation: a rational approach to contraception. Blood 2011; 118 (08) 2055-2061 , quiz 2375
- 6 Mannucci PM, Franchini M. Classic thrombophilic gene variants. Thromb Haemost 2015; 114 (05) 885-889
- 7 Van Cott EM, Khor B, Zehnder JL. Factor V Leiden. Am J Hematol 2016; 91 (01) 46-49
- 8 Segers K, Dahlbäck B, Nicolaes GA. Coagulation factor V and thrombophilia: background and mechanisms. Thromb Haemost 2007; 98 (03) 530-542
- 9 Dahlbäck B. Early days of APC resistance and FV Leiden. Hamostaseologie 2008; 28 (03) 103-109
- 10 Johnson NV, Khor B, Van Cott EM. Advances in laboratory testing for thrombophilia. Am J Hematol 2012; 87 (Suppl. 01) S108-S112
- 11 Kadauke S, Khor B, Van Cott EM. Activated protein C resistance testing for factor V Leiden. Am J Hematol 2014; 89 (12) 1147-1150
- 12 Pezeshkpoor B, Castoldi E, Mahler A. , et al. Identification and functional characterization of a novel F5 mutation (Ala512Val, FVB onn ) associated with activated protein C resistance. J Thromb Haemost 2016; 14 (07) 1353-1363
- 13 Emadi A, Crim MT, Brotman DJ. , et al. Analytic validity of genetic tests to identify factor V Leiden and prothrombin G20210A. Am J Hematol 2010; 85 (04) 264-270
- 14 Khor B, Van Cott EM. Laboratory tests for antithrombin deficiency. Am J Hematol 2010; 85 (12) 947-950
- 15 Bauer KA, Nguyen-Cao TM, Spears JB. Issues in the diagnosis and management of hereditary antithrombin deficiency. Ann Pharmacother 2016; 50 (09) 758-767
- 16 Alhenc-Gelas M, Plu-Bureau G, Hugon-Rodin J, Picard V, Horellou MH. ; GFHT study group on Genetic Thrombophilia. Thrombotic risk according to SERPINC1 genotype in a large cohort of subjects with antithrombin inherited deficiency. Thromb Haemost 2017; 117 (06) 1040-1051
- 17 Cooper PC, Coath F, Daly ME, Makris M. The phenotypic and genetic assessment of antithrombin deficiency. Int J Lab Hematol 2011; 33 (03) 227-237
- 18 Khor B, Van Cott EM. Laboratory tests for protein C deficiency. Am J Hematol 2010; 85 (06) 440-442
- 19 Marlar RA, Gausman JN. Laboratory testing issues for protein C, protein S, and antithrombin. Int J Lab Hematol 2014; 36 (03) 289-295
- 20 Meijer P, Kluft C, Haverkate F, De Maat MP. The long-term within- and between-laboratory variability for assay of antithrombin, and proteins C and S: results derived from the external quality assessment program for thrombophilia screening of the ECAT Foundation. J Thromb Haemost 2003; 1 (04) 748-753
- 21 Marlar RA, Potts RM, Welsh CW. Accuracy of diagnosis of protein S deficiency by protein S activity and antigen assays. J Clin Ligand Assay 2005; 28: 130-135
- 22 Moser KA, Adcock Funk DM. Pitfalls in special coagulation testing: three illustrative case studies. Int J Lab Hematol 2013; 35 (03) 334-338
- 23 Mackie I, Cooper P, Lawrie A, Kitchen S, Gray E, Laffan M. ; British Committee for Standards in Haematology. Guidelines on the laboratory aspects of assays used in haemostasis and thrombosis. Int J Lab Hematol 2013; 35 (01) 1-13
- 24 Marlar RA, Gausman JN. Protein S abnormalities: a diagnostic nightmare. Am J Hematol 2011; 86 (05) 418-421
- 25 Ungerstedt JS, Schulman S, Egberg N, Antovic J, Blombäck N. Discrepancy between antithrombin activity methods revealed in Antithrombin Stockholm: do factor Xa-based methods overestimate antithrombin activity in some patients?. Blood 2002; 99 (06) 2271-2272
- 26 Lippi G, Plebani M, Favaloro EJ. Interference in coagulation testing: focus on spurious hemolysis, icterus, and lipemia. Semin Thromb Hemost 2013; 39 (03) 258-266
- 27 Kakagia DD, Papanas N, Karadimas E, Polychronidis A. Warfarin-induced skin necrosis. Ann Dermatol 2014; 26 (01) 96-98
- 28 Franchini M, Mannucci PM. ABO blood group and thrombotic vascular disease. Thromb Haemost 2014; 112 (06) 1103-1109
- 29 Timp JF, Lijfering WM, Flinterman LE. , et al. Predictive value of factor VIII levels for recurrent venous thrombosis: results from the MEGA follow-up study. J Thromb Haemost 2015; 13 (10) 1823-1832
- 30 Jenkins PV, Rawley O, Smith OP, O'Donnell JS. Elevated factor VIII levels and risk of venous thrombosis. Br J Haematol 2012; 157 (06) 653-663
- 31 Lussana F, Betti S, D'Angelo A. , et al. Evaluation of the prevalence of severe hyperhomocysteinemia in adult patients with thrombosis who underwent screening for thrombophilia. Thromb Res 2013; 132 (06) 681-684
- 32 Casini A, Neerman-Arbez M, Ariëns RA, de Moerloose P. Dysfibrinogenemia: from molecular anomalies to clinical manifestations and management. J Thromb Haemost 2015; 13 (06) 909-919
- 33 Hach-Wunderle V, Gerlach H, Konstantinides S. , et al. Interdisziplinäre S2k-Leitlinie: Diagnostik und Therapie der Bein- und Beckenvenenthrombose und der Lungenembolie: Registernummer 065–002. Vasa 2016; 45 (Suppl 90): 6-48
- 34 Miyakis S, Lockshin MD, Atsumi T. , et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006; 4 (02) 295-306
- 35 Keeling D, Mackie I, Moore GW, Greer IA, Greaves M. ; British Committee for Standards in Haematology. Guidelines on the investigation and management of antiphospholipid syndrome. Br J Haematol 2012; 157 (01) 47-58
- 36 Linnemann B. Antiphospholipid syndrome - an update. Vasa 2018; 47 (06) 451-464
- 37 Yelnik CM, Urbanski G, Drumez E. , et al. Persistent triple antiphospholipid antibody positivity as a strong risk factor of first thrombosis, in a long-term follow-up study of patients without history of thrombosis or obstetrical morbidity. Lupus 2017; 26 (02) 163-169
- 38 Pengo V, Ruffatti A, Legnani C. , et al. Incidence of a first thromboembolic event in asymptomatic carriers of high-risk antiphospholipid antibody profile: a multicenter prospective study. Blood 2011; 118 (17) 4714-4718
- 39 Sciascia S, Sanna G, Khamashta MA. , et al; APS Action. The estimated frequency of antiphospholipid antibodies in young adults with cerebrovascular events: a systematic review. Ann Rheum Dis 2015; 74 (11) 2028-2033
- 40 Islam MA, Khandker SS, Alam F, Kamal MA, Gan SH. Genetic risk factors in thrombotic primary antiphospholipid syndrome: a systematic review with bioinformatic analyses. Autoimmun Rev 2018; 17 (03) 226-243
- 41 Pengo V, Tripodi A, Reber G. , et al; Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibody of the Scientific and Standardisation Committee of the International Society on Thrombosis and Haemostasis. Update of the guidelines for lupus anticoagulant detection. J Thromb Haemost 2009; 7 (10) 1737-1740
- 42 Moore GW. Recent guidelines and recommendations for laboratory detection of lupus anticoagulants. Semin Thromb Hemost 2014; 40 (02) 163-171
- 43 Devreese KM, Pierangeli SS, de Laat B, Tripodi A, Atsumi T, Ortel TL. ; Subcommittee on Lupus Anticoagulant/Phospholipid/Dependent Antibodies. Testing for antiphospholipid antibodies with solid phase assays: guidance from the SSC of the ISTH. J Thromb Haemost 2014; 12 (05) 792-795
- 44 Meneghel L, Ruffatti A, Gavasso S. , et al. The clinical performance of a chemiluminescent immunoassay in detecting anti-cardiolipin and anti-β2 glycoprotein I antibodies. A comparison with a homemade ELISA method. Clin Chem Lab Med 2015; 53 (07) 1083-1089
- 45 Oku K, Amengual O, Kato M. , et al. Significance of fully automated tests for the diagnosis of antiphospholipid syndrome. Thromb Res 2016; 146: 1-6
- 46 Devreese KM, Poncet A, Lindhoff-Last E, Musial J, de Moerloose P, Fontana P. A multicenter study to assess the reproducibility of antiphospholipid antibody results produced by an automated system. J Thromb Haemost 2017; 15 (01) 91-95
- 47 Reynaud Q, Lega JC, Mismetti P. , et al. Risk of venous and arterial thrombosis according to type of antiphospholipid antibodies in adults without systemic lupus erythematosus: a systematic review and meta-analysis. Autoimmun Rev 2014; 13 (06) 595-608
- 48 Kelchtermans H, Pelkmans L, de Laat B, Devreese KM. IgG/IgM antiphospholipid antibodies present in the classification criteria for the antiphospholipid syndrome: a critical review of their association with thrombosis. J Thromb Haemost 2016; 14 (08) 1530-1548
- 49 Pengo V, Ruffatti A, Legnani C. , et al. Clinical course of high-risk patients diagnosed with antiphospholipid syndrome. J Thromb Haemost 2010; 8 (02) 237-242
- 50 Pengo V, Biasiolo A, Gresele P. , et al. A comparison of lupus anticoagulant-positive patients with clinical picture of antiphospholipid syndrome and those without. Arterioscler Thromb Vasc Biol 2007; 27 (12) e309 –e310
- 51 Iwaniec T, Kaczor MP, Celińska-Löwenhoff M, Polański S, Musiał J. Clinical significance of anti-domain 1 β2-glycoprotein I antibodies in antiphospholipid syndrome. Thromb Res 2017; 153: 90-94
- 52 Hoxha A, Mattia E, Tonello M, Grava C, Pengo V, Ruffatti A. Antiphosphatidylserine/prothrombin antibodies as biomarkers to identify severe primary antiphospholipid syndrome. Clin Chem Lab Med 2017; 55 (06) 890-898
- 53 Murthy V, Willis R, Romay-Penabad Z. , et al. Value of isolated IgA anti-β2 -glycoprotein I positivity in the diagnosis of the antiphospholipid syndrome. Arthritis Rheum 2013; 65 (12) 3186-3193
- 54 Bećarević M. The IgG and IgM isotypes of anti-annexin A5 antibodies: relevance for primary antiphospholipid syndrome. J Thromb Thrombolysis 2016; 42 (04) 552-557
- 55 Sanfelippo MJ, Engel JM, Onitilo AA. Antithrombin levels are unaffected by warfarin use. Arch Pathol Lab Med 2014; 138 (07) 967-968
- 56 Isert M, Miesbach W, Stoever G, Lindhoff-Last E, Linnemann B. Screening for lupus anticoagulants in patients treated with vitamin K antagonists. Int J Lab Hematol 2015; 37 (06) 758-765
- 57 Rühl H, Reda S, Müller J, Oldenburg J, Pötzsch B. Activated factor X-based versus thrombin-based antithrombin testing in thrombophilia workup in the DOAC era. Thromb Haemost 2018; 118 (02) 381-387
- 58 Kitchen S, Gray E, Mackie I, Baglin T, Makris M. ; BCSH committee. Measurement of non-coumarin anticoagulants and their effects on tests of Haemostasis: guidance from the British Committee for Standards in Haematology. Br J Haematol 2014; 166 (06) 830-841
- 59 Antovic A, Norberg EM, Berndtsson M. , et al. Effects of direct oral anticoagulants on lupus anticoagulant assays in a real-life setting. Thromb Haemost 2017; 117 (09) 1700-1704
- 60 Martinuzzo ME, Barrera LH, D'àdamo MA, Otaso JC, Gimenez MI, Oyhamburu J. Frequent false-positive results of lupus anticoagulant tests in plasmas of patients receiving the new oral anticoagulants and enoxaparin. Int J Lab Hematol 2014; 36 (02) 144-150
- 61 Douxfils J, Mullier F, Robert S, Chatelain C, Chatelain B, Dogné JM. Impact of dabigatran on a large panel of routine or specific coagulation assays. Laboratory recommendations for monitoring of dabigatran etexilate. Thromb Haemost 2012; 107 (05) 985-997
- 62 Ratzinger F, Lang M, Belik S. , et al. Lupus-anticoagulant testing at NOAC trough levels. Thromb Haemost 2016; 116 (02) 235-240
- 63 Kopatz WF, Brinkman HJM, Meijers JCM. Use of DOAC Stop for elimination of anticoagulants in the thrombin generation assay. Thromb Res 2018; 170: 97-101
- 64 Platton S, Hunt C. Influence of DOAC Stop on coagulation assays in samples from patients on rivaroxaban or apixaban. Int J Lab Hematol 2018 (e-pub ahead of print). doi: 10.1111/ijlh.12950
- 65 Kearon C, Akl EA, Comerota AJ. , et al. American College of Chest Physicians. Antithrombotic therapy for VTE Disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141 (2, Suppl): e419-e494
- 66 Kearon C, Ageno W, Cannegieter SC, Cosmi B, Geersing GJ, Kyrle PA. ; Subcommittees on Control of Anticoagulation, and Predictive and Diagnostic Variables in Thrombotic Disease. Categorization of patients as having provoked or unprovoked venous thromboembolism: guidance from the SSC of ISTH. J Thromb Haemost 2016; 14 (07) 1480-1483
- 67 National Clinical Guideline Centre (UK). Venous thromboembolic diseases: diagnosis, management and thrombophilia testing (Internet). London: Royal College of Physicians (UK); June 2012 (NICE Clinical Guidelines, No. 144). Available at: http://guidance.nice.org.uk/CG144 . Accessed 14 January, 2019
- 68 Cohn DM, Vansenne F, de Borgie CA, Middeldorp S. Thrombophilia testing for prevention of recurrent venous thromboembolism. Cochrane Database Syst Rev 2012; 12: CD007069
- 69 Cohn DM, Middeldorp S. Early termination of the multicentre randomised clinical trial to evaluate the benefit of testing for thrombophilia following a first venous thromboembolism: the NOSTRADAMUS study [in Dutch]. Ned Tijdschr Geneeskd 2008; 152 (38) 2093-2094
- 70 Weingarz L, Schindewolf M, Schwonberg J. , et al. Thrombophilia and risk of VTE recurrence according to the age at the time of first VTE manifestation. Vasa 2015; 44 (04) 313-323
- 71 Lijfering WM, Rosendaal FR, Cannegieter SC. Risk factors for venous thrombosis - current understanding from an epidemiological point of view. Br J Haematol 2010; 149 (06) 824-833
- 72 Franchini M, Martinelli I, Mannucci PM. Uncertain thrombophilia markers. Thromb Haemost 2016; 115 (01) 25-30
- 73 Baglin T. The role of the laboratory in treatment with new oral anticoagulants. J Thromb Haemost 2013; 11 (Suppl. 01) 122-128
- 74 Simeon L, Nagler M, Wuillemin WA. Neue orale Antikoagulanzien - Einfluss auf Gerinnungstests. Dtsch Med Wochenschr 2014; 139 (03) 94-99
- 75 Gosselin RC, Adcock DM. The laboratory's 2015 perspective on direct oral anticoagulant testing. J Thromb Haemost 2016; 14 (05) 886-893
- 76 Favaloro EJ. Danger of false negative (exclusion) or false positive (diagnosis) for ‘congenital thrombophilia’ in the age of anticoagulants. Clin Chem Lab Med 2018; doi: 10.1515/cclm-2018-1041