Semin Liver Dis 2019; 39(02): 111-123
DOI: 10.1055/s-0039-1678727
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Novel Targets in the Immune Microenvironment of the Hepatic Sinusoids for Treating Liver Diseases

Daniel A. Patten
1   Centre for Liver Research, Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Edgbaston, Birmingham, United Kingdom
2   NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
,
Emma L. Shepherd
1   Centre for Liver Research, Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Edgbaston, Birmingham, United Kingdom
2   NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
,
Christopher J. Weston
1   Centre for Liver Research, Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Edgbaston, Birmingham, United Kingdom
2   NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
,
Shishir Shetty
1   Centre for Liver Research, Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Edgbaston, Birmingham, United Kingdom
2   NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
› Author Affiliations
Further Information

Publication History

Publication Date:
25 March 2019 (online)

Abstract

Immune dysregulation and accumulation of leukocytes is a hallmark of adult chronic liver diseases. Progressive hepatic inflammation can lead to fibrosis and cirrhosis with a high risk of liver failure or hepatocellular cancer (HCC). Recent advances have been made in the treatment of liver disease including the development of highly effective antiviral therapy for hepatitis C and the potential of immunotherapy for HCC. Despite this, the majority of other chronic liver diseases including alcoholic liver disease, fatty liver disease, and cholestatic diseases do not respond to conventional anti-inflammatory therapies. Recent studies defining the organ-specific properties that contribute to resident immune activation and immune cell recruitment from the circulation in these conditions have identified novel hepatic inflammatory pathways, which are now being targeted in clinical trials. Further understanding of how the immune microenvironment is regulated within the liver and how disease-specific mechanisms alter this process will hopefully lead to combination therapies to prevent aberrant inflammation and also promote fibrosis resolution. In this review, we focus on the advances that have been made in identifying key components of the inflammatory pathway including the recognition of danger signals, the recruitment and retention of lymphocytes from the circulation, and the pathways that promote resolution.

 
  • References

  • 1 Pimpin L, Cortez-Pinto H, Negro F. , et al; EASL HEPAHEALTH Steering Committee. Burden of liver disease in Europe: epidemiology and analysis of risk factors to identify prevention policies. J Hepatol 2018; 69 (03) 718-735
  • 2 Chung RT, Baumert TF. Curing chronic hepatitis C: the arc of a medical triumph. N Engl J Med 2014; 370 (17) 1576-1578
  • 3 Chang TT, Liaw YF, Wu SS. , et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology 2010; 52 (03) 886-893
  • 4 Papatheodoridis GV, Lampertico P, Manolakopoulos S, Lok A. Incidence of hepatocellular carcinoma in chronic hepatitis B patients receiving nucleos(t)ide therapy: a systematic review. J Hepatol 2010; 53 (02) 348-356
  • 5 Ramachandran P, Henderson NC. Antifibrotics in chronic liver disease: tractable targets and translational challenges. Lancet Gastroenterol Hepatol 2016; 1 (04) 328-340
  • 6 Canbay A, Friedman S, Gores GJ. Apoptosis: the nexus of liver injury and fibrosis. Hepatology 2004; 39 (02) 273-278
  • 7 Shetty S, Lalor PF, Adams DH. Lymphocyte recruitment to the liver: molecular insights into the pathogenesis of liver injury and hepatitis. Toxicology 2008; 254 (03) 136-146
  • 8 Ibrahim SH, Hirsova P, Gores GJ. Non-alcoholic steatohepatitis pathogenesis: sublethal hepatocyte injury as a driver of liver inflammation. Gut 2018; 67 (05) 963-972
  • 9 Hirschfield GM, Karlsen TH, Lindor KD, Adams DH. Primary sclerosing cholangitis. Lancet 2013; 382 (9904): 1587-1599
  • 10 Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14 (07) 397-411
  • 11 Lo RC, Kim H. Histopathological evaluation of liver fibrosis and cirrhosis regression. Clin Mol Hepatol 2017; 23 (04) 302-307
  • 12 Webb GJ, Siminovitch KA, Hirschfield GM. The immunogenetics of primary biliary cirrhosis: a comprehensive review. J Autoimmun 2015; 64: 42-52
  • 13 Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology 2012; 143 (05) 1158-1172
  • 14 Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol 2017; 17 (05) 306-321
  • 15 Iacobini C, Menini S, Ricci C. , et al. Accelerated lipid-induced atherogenesis in galectin-3-deficient mice: role of lipoxidation via receptor-mediated mechanisms. Arterioscler Thromb Vasc Biol 2009; 29 (06) 831-836
  • 16 Harrison SA, Marri SR, Chalasani N. , et al. Randomised clinical study: GR-MD-02, a galectin-3 inhibitor, vs. placebo in patients having non-alcoholic steatohepatitis with advanced fibrosis. Aliment Pharmacol Ther 2016; 44 (11-12): 1183-1198
  • 17 Bieghs V, Wouters K, van Gorp PJ. , et al. Role of scavenger receptor A and CD36 in diet-induced nonalcoholic steatohepatitis in hyperlipidemic mice. Gastroenterology 2010; 138 (07) 2477-2486 , 2486.e1–2486.e3
  • 18 Busch CJ, Hendrikx T, Weismann D. , et al. Malondialdehyde epitopes are sterile mediators of hepatic inflammation in hypercholesterolemic mice. Hepatology 2017; 65 (04) 1181-1195
  • 19 Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 2015; 21 (07) 677-687
  • 20 Wree A, Marra F. The inflammasome in liver disease. J Hepatol 2016; 65 (05) 1055-1056
  • 21 Petrasek J, Bala S, Csak T. , et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J Clin Invest 2012; 122 (10) 3476-3489
  • 22 Henao-Mejia J, Elinav E, Jin C. , et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012; 482 (7384): 179-185
  • 23 Wree A, McGeough MD, Inzaugarat ME. , et al. NLRP3 inflammasome driven liver injury and fibrosis: Roles of IL-17 and TNF in mice. Hepatology 2017
  • 24 Dal-Secco D, Wang J, Zeng Z. , et al. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med 2015; 212 (04) 447-456
  • 25 Karlmark KR, Weiskirchen R, Zimmermann HW. , et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 2009; 50 (01) 261-274
  • 26 Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol 2017; 66 (06) 1300-1312
  • 27 Krenkel O, Puengel T, Govaere O. , et al. Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology 2018; 67 (04) 1270-1283
  • 28 Friedman SL, Ratziu V, Harrison SA. , et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology 2018; 67 (05) 1754-1767
  • 29 Wang J, Kubes P. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell 2016; 165 (03) 668-678
  • 30 Kaufmann SH. Gamma/delta and other unconventional T lymphocytes: what do they see and what do they do?. Proc Natl Acad Sci U S A 1996; 93 (06) 2272-2279
  • 31 Kenna T, Golden-Mason L, Norris S, Hegarty JE, O'Farrelly C, Doherty DG. Distinct subpopulations of gamma delta T cells are present in normal and tumor-bearing human liver. Clin Immunol 2004; 113 (01) 56-63
  • 32 Carding SR, Egan PJ. Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2002; 2 (05) 336-345
  • 33 Zhao N, Hao J, Ni Y. , et al. Vγ4 γδ T cell-derived IL-17A negatively regulates NKT cell function in Con A-induced fulminant hepatitis. J Immunol 2011; 187 (10) 5007-5014
  • 34 Hammerich L, Bangen JM, Govaere O. , et al. Chemokine receptor CCR6-dependent accumulation of γδ T cells in injured liver restricts hepatic inflammation and fibrosis. Hepatology 2014; 59 (02) 630-642
  • 35 Geissmann F, Cameron TO, Sidobre S. , et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 2005; 3 (04) e113
  • 36 Wehr A, Baeck C, Heymann F. , et al. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis. J Immunol 2013; 190 (10) 5226-5236
  • 37 Syn WK, Oo YH, Pereira TA. , et al. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 2010; 51 (06) 1998-2007
  • 38 Syn WK, Agboola KM, Swiderska M. , et al. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut 2012; 61 (09) 1323-1329
  • 39 Kurioka A, Walker LJ, Klenerman P, Willberg CB. MAIT cells: new guardians of the liver. Clin Transl Immunology 2016; 5 (08) e98
  • 40 Kjer-Nielsen L, Patel O, Corbett AJ. , et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 2012; 491 (7426): 717-723
  • 41 Treiner E, Duban L, Bahram S. , et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 2003; 422 (6928): 164-169
  • 42 Riva A, Patel V, Kurioka A. , et al. Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut 2018; 67 (05) 918-930
  • 43 Tang XZ, Jo J, Tan AT. , et al. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J Immunol 2013; 190 (07) 3142-3152
  • 44 Jeffery HC, van Wilgenburg B, Kurioka A. , et al. Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1. J Hepatol 2016; 64 (05) 1118-1127
  • 45 Balmer ML, Slack E, de Gottardi A. , et al. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci Transl Med 2014; 6 (237) 237ra66
  • 46 Hegde P, Weiss E, Paradis V. , et al. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nat Commun 2018; 9 (01) 2146
  • 47 Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity 2014; 41 (05) 694-707
  • 48 Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 2002; 1 (01) 1
  • 49 Sørensen KK, McCourt P, Berg T. , et al. The scavenger endothelial cell: a new player in homeostasis and immunity. Am J Physiol Regul Integr Comp Physiol 2012; 303 (12) R1217-R1230
  • 50 Lalor PF, Lai WK, Curbishley SM, Shetty S, Adams DH. Human hepatic sinusoidal endothelial cells can be distinguished by expression of phenotypic markers related to their specialised functions in vivo. World J Gastroenterol 2006; 12 (34) 5429-5439
  • 51 McEver RP. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc Res 2015; 107 (03) 331-339
  • 52 Schnoor M, Alcaide P, Voisin MB, van Buul JD. Crossing the vascular wall: common and unique mechanisms exploited by different leukocyte subsets during extravasation. Mediators Inflamm 2015; 2015: 946509
  • 53 Muller WA. Transendothelial migration: unifying principles from the endothelial perspective. Immunol Rev 2016; 273 (01) 61-75
  • 54 Shetty S, Weston CJ, Oo YH. , et al. Common lymphatic endothelial and vascular endothelial receptor-1 mediates the transmigration of regulatory T cells across human hepatic sinusoidal endothelium. J Immunol 2011; 186 (07) 4147-4155
  • 55 Patten DA, Wilson GK, Bailey D. , et al. Human liver sinusoidal endothelial cells promote intracellular crawling of lymphocytes during recruitment: a new step in migration. Hepatology 2017; 65 (01) 294-309
  • 56 Shetty S, Lalor PF, Adams DH. Liver sinusoidal endothelial cells: gatekeepers of hepatic immunity. Nat Rev Gastroenterol Hepatol 2018; 15 (09) 555-567
  • 57 Elices MJ, Osborn L, Takada Y. , et al. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 1990; 60 (04) 577-584
  • 58 Lalor PF, Clements JM, Pigott R, Humphries MJ, Spragg JH, Nash GB. Association between receptor density, cellular activation, and transformation of adhesive behavior of flowing lymphocytes binding to VCAM-1. Eur J Immunol 1997; 27 (06) 1422-1426
  • 59 Lalor PF, Shields P, Grant A, Adams DH. Recruitment of lymphocytes to the human liver. Immunol Cell Biol 2002; 80 (01) 52-64
  • 60 Marlin SD, Springer TA. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 1987; 51 (05) 813-819
  • 61 Shetty S, Bruns T, Weston CJ. , et al. Recruitment mechanisms of primary and malignant B cells to the human liver. Hepatology 2012; 56 (04) 1521-1531
  • 62 Haraldsen G, Kvale D, Lien B, Farstad IN, Brandtzaeg P. Cytokine-regulated expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human microvascular endothelial cells. J Immunol 1996; 156 (07) 2558-2565
  • 63 Barreiro O, Zamai M, Yáñez-Mó M. , et al. Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J Cell Biol 2008; 183 (03) 527-542
  • 64 Barreiro O, Yáñez-Mó M, Sala-Valdés M. , et al. Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood 2005; 105 (07) 2852-2861
  • 65 Wadkin JCR, Patten DA, Kamarajah SK. , et al. CD151 supports VCAM-1-mediated lymphocyte adhesion to liver endothelium and is upregulated in chronic liver disease and hepatocellular carcinoma. Am J Physiol Gastrointest Liver Physiol 2017; 313 (02) G138-G149
  • 66 Berlin C, Berg EL, Briskin MJ. , et al. α 4 β 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 1993; 74 (01) 185-195
  • 67 Habtezion A, Nguyen LP, Hadeiba H, Butcher EC. Leukocyte trafficking to the small intestine and colon. Gastroenterology 2016; 150 (02) 340-354
  • 68 Liaskou E, Karikoski M, Reynolds GM. , et al. Regulation of mucosal addressin cell adhesion molecule 1 expression in human and mice by vascular adhesion protein 1 amine oxidase activity. Hepatology 2011; 53 (02) 661-672
  • 69 Grant AJ, Lalor PF, Hübscher SG, Briskin M, Adams DH. MAdCAM-1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM-1 in chronic inflammatory liver disease). Hepatology 2001; 33 (05) 1065-1072
  • 70 Grant AJ, Lalor PF, Salmi M, Jalkanen S, Adams DH. Homing of mucosal lymphocytes to the liver in the pathogenesis of hepatic complications of inflammatory bowel disease. Lancet 2002; 359 (9301): 150-157
  • 71 Feagan BG, Rutgeerts P, Sands BE. , et al; GEMINI 1 Study Group. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med 2013; 369 (08) 699-710
  • 72 Sandborn WJ, Feagan BG, Rutgeerts P. , et al; GEMINI 2 Study Group. Vedolizumab as induction and maintenance therapy for Crohn's disease. N Engl J Med 2013; 369 (08) 711-721
  • 73 Lim TY, Pavlidis P, Gulati S. , et al. Vedolizumab in inflammatory bowel disease associated with autoimmune liver disease pre- and postliver transplantation: a case series. Inflamm Bowel Dis 2016; 22 (10) E39-E40
  • 74 Christensen B, Micic D, Gibson PR. , et al. Vedolizumab in patients with concurrent primary sclerosing cholangitis and inflammatory bowel disease does not improve liver biochemistry but is safe and effective for the bowel disease. Aliment Pharmacol Ther 2018; 47 (06) 753-762
  • 75 Salmi M, Jalkanen S. Vascular adhesion protein-1: a cell surface amine oxidase in translation. Antioxid Redox Signal 2017
  • 76 Jaakkola K, Nikula T, Holopainen R. , et al. In vivo detection of vascular adhesion protein-1 in experimental inflammation. Am J Pathol 2000; 157 (02) 463-471
  • 77 Salmi M, Tohka S, Berg EL, Butcher EC, Jalkanen S. Vascular adhesion protein 1 (VAP-1) mediates lymphocyte subtype-specific, selectin-independent recognition of vascular endothelium in human lymph nodes. J Exp Med 1997; 186 (04) 589-600
  • 78 McNab G, Reeves JL, Salmi M, Hubscher S, Jalkanen S, Adams DH. Vascular adhesion protein 1 mediates binding of T cells to human hepatic endothelium. Gastroenterology 1996; 110 (02) 522-528
  • 79 Lalor PF, Edwards S, McNab G, Salmi M, Jalkanen S, Adams DH. Vascular adhesion protein-1 mediates adhesion and transmigration of lymphocytes on human hepatic endothelial cells. J Immunol 2002; 169 (02) 983-992
  • 80 Lalor PF, Sun PJ, Weston CJ, Martin-Santos A, Wakelam MJ, Adams DH. Activation of vascular adhesion protein-1 on liver endothelium results in an NF-kappaB-dependent increase in lymphocyte adhesion. Hepatology 2007; 45 (02) 465-474
  • 81 Weston CJ, Shepherd EL, Claridge LC. , et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest 2015; 125 (02) 501-520
  • 82 Salmi M, Jalkanen S. Vascular adhesion protein-1: a cell surface amine oxidase in translation. Antioxid Redox Signal 2019; 30 (03) 314-332
  • 83 Wang H, Shao Y, Zhang S. , et al. CXCL16 deficiency attenuates acetaminophen-induced hepatotoxicity through decreasing hepatic oxidative stress and inflammation in mice. Acta Biochim Biophys Sin (Shanghai) 2017; 49 (06) 541-549
  • 84 Xu H, Xu W, Chu Y, Gong Y, Jiang Z, Xiong S. Involvement of up-regulated CXC chemokine ligand 16/scavenger receptor that binds phosphatidylserine and oxidized lipoprotein in endotoxin-induced lethal liver injury via regulation of T-cell recruitment and adhesion. Infect Immun 2005; 73 (07) 4007-4016
  • 85 Heydtmann M, Lalor PF, Eksteen JA, Hübscher SG, Briskin M, Adams DH. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. J Immunol 2005; 174 (02) 1055-1062
  • 86 Sato T, Thorlacius H, Johnston B. , et al. Role for CXCR6 in recruitment of activated CD8+ lymphocytes to inflamed liver. J Immunol 2005; 174 (01) 277-283
  • 87 Hudspeth K, Donadon M, Cimino M. , et al. Human liver-resident CD56(bright)/CD16(neg) NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways. J Autoimmun 2016; 66: 40-50
  • 88 Stegmann KA, Robertson F, Hansi N. , et al. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver. Sci Rep 2016; 6: 26157
  • 89 Xu H-B, Gong Y-P, Cheng J, Chu Y-W, Xiong S-D. CXCL16 participates in pathogenesis of immunological liver injury by regulating T lymphocyte infiltration in liver tissue. World J Gastroenterol 2005; 11 (32) 4979-4985
  • 90 Wehr A, Tacke F. The roles of CXCL16 and CXCR6 in liver inflammation and fibrosis. Curr Pathobiol Rep 2015; 3 (04) 283-290
  • 91 Irjala H, Elima K, Johansson EL. , et al. The same endothelial receptor controls lymphocyte traffic both in vascular and lymphatic vessels. Eur J Immunol 2003; 33 (03) 815-824
  • 92 Zhao H, Liao X, Kang Y. Tregs: where we are and what comes next?. Front Immunol 2017; 8: 1578
  • 93 Politz O, Gratchev A, McCourt PA. , et al. Stabilin-1 and -2 constitute a novel family of fasciclin-like hyaluronan receptor homologues. Biochem J 2002; 362 (Pt 1): 155-164
  • 94 Zhou B, Weigel JA, Fauss L, Weigel PH. Identification of the hyaluronan receptor for endocytosis (HARE). J Biol Chem 2000; 275 (48) 37733-37741
  • 95 Jung M-Y, Park S-Y, Kim I-S. Stabilin-2 is involved in lymphocyte adhesion to the hepatic sinusoidal endothelium via the interaction with alphaMbeta2 integrin. J Leukoc Biol 2007; 82 (05) 1156-1165
  • 96 Piccolo P, Vetrini F, Mithbaokar P. , et al. SR-A and SREC-I are Kupffer and endothelial cell receptors for helper-dependent adenoviral vectors. Mol Ther 2013; 21 (04) 767-774
  • 97 Patten DA, Kamarajah SK, Rose JM. , et al. SCARF-1 promotes adhesion of CD4+ T cells to human hepatic sinusoidal endothelium under conditions of shear stress. Sci Rep 2017; 7 (01) 17600
  • 98 Patten DA. SCARF1: a multifaceted, yet largely understudied, scavenger receptor. Inflamm Res 2018; 67 (08) 627-632
  • 99 Campbell JJ, Hedrick J, Zlotnik A, Siani MA, Thompson DA, Butcher EC. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 1998; 279 (5349): 381-384
  • 100 Shulman Z, Cohen SJ, Roediger B. , et al. Transendothelial migration of lymphocytes mediated by intraendothelial vesicle stores rather than by extracellular chemokine depots. Nat Immunol 2011; 13 (01) 67-76
  • 101 Curbishley SM, Eksteen B, Gladue RP, Lalor P, Adams DH. CXCR 3 activation promotes lymphocyte transendothelial migration across human hepatic endothelium under fluid flow. Am J Pathol 2005; 167 (03) 887-899
  • 102 Nishioji K, Okanoue T, Itoh Y. , et al. Increase of chemokine interferon-inducible protein-10 (IP-10) in the serum of patients with autoimmune liver diseases and increase of its mRNA expression in hepatocytes. Clin Exp Immunol 2001; 123 (02) 271-279
  • 103 Butera D, Marukian S, Iwamaye AE. , et al. Plasma chemokine levels correlate with the outcome of antiviral therapy in patients with hepatitis C. Blood 2005; 106 (04) 1175-1182
  • 104 Ajuebor MN, Hogaboam CM, Le T, Proudfoot AE, Swain MG. CCL3/MIP-1alpha is pro-inflammatory in murine T cell-mediated hepatitis by recruiting CCR1-expressing CD4(+) T cells to the liver. Eur J Immunol 2004; 34 (10) 2907-2918
  • 105 Shields PL, Morland CM, Salmon M, Qin S, Hubscher SG, Adams DH. Chemokine and chemokine receptor interactions provide a mechanism for selective T cell recruitment to specific liver compartments within hepatitis C-infected liver. J Immunol 1999; 163 (11) 6236-6243
  • 106 de Graaf KL, Lapeyre G, Guilhot F. , et al. NI-0801, an anti-chemokine (C-X-C motif) ligand 10 antibody, in patients with primary biliary cholangitis and an incomplete response to ursodeoxycholic acid. Hepatol Commun 2018; 2 (05) 492-503
  • 107 Oo YH, Banz V, Kavanagh D. , et al. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver. J Hepatol 2012; 57 (05) 1044-1051
  • 108 Oo YH, Weston CJ, Lalor PF. , et al. Distinct roles for CCR4 and CXCR3 in the recruitment and positioning of regulatory T cells in the inflamed human liver. J Immunol 2010; 184 (06) 2886-2898
  • 109 Meng F, Wang K, Aoyama T. , et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 2012; 143 (03) 765-776.e3
  • 110 Rios DA, Valva P, Casciato PC. , et al. Chronic hepatitis C liver microenvironment: role of the Th17/Treg interplay related to fibrogenesis. Sci Rep 2017; 7 (01) 13283
  • 111 He B, Wu L, Xie W. , et al. The imbalance of Th17/Treg cells is involved in the progression of nonalcoholic fatty liver disease in mice. BMC Immunol 2017; 18 (01) 33
  • 112 Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 2017; 121: 27-42
  • 113 Holt AP, Haughton EL, Lalor PF, Filer A, Buckley CD, Adams DH. Liver myofibroblasts regulate infiltration and positioning of lymphocytes in human liver. Gastroenterology 2009; 136 (02) 705-714
  • 114 Fallowfield JA, Mizuno M, Kendall TJ. , et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol 2007; 178 (08) 5288-5295
  • 115 Duffield JS, Forbes SJ, Constandinou CM. , et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005; 115 (01) 56-65
  • 116 Ramachandran P, Pellicoro A, Vernon MA. , et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A 2012; 109 (46) E3186-E3195
  • 117 Fraser AR, Pass C, Burgoyne P. , et al. Development, functional characterization and validation of methodology for GMP-compliant manufacture of phagocytic macrophages: a novel cellular therapeutic for liver cirrhosis. Cytotherapy 2017; 19 (09) 1113-1124
  • 118 Moore JK, Mackinnon AC, Wojtacha D. , et al. Phenotypic and functional characterization of macrophages with therapeutic potential generated from human cirrhotic monocytes in a cohort study. Cytotherapy 2015; 17 (11) 1604-1616
  • 119 Rantakari P, Patten DA, Valtonen J. , et al. Stabilin-1 expression defines a subset of macrophages that mediate tissue homeostasis and prevent fibrosis in chronic liver injury. Proc Natl Acad Sci U S A 2016; 113 (33) 9298-9303
  • 120 Patten DA, Shetty S. Chronic liver disease: scavenger hunt for novel therapies. Lancet 2018; 391 (10116): 104-105
  • 121 McMahan RH, Wang XX, Cheng LL. , et al. Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J Biol Chem 2013; 288 (17) 11761-11770
  • 122 Merlen G, Ursic-Bedoya J, Jourdainne V. , et al. Bile acids and their receptors during liver regeneration: “Dangerous protectors”. Mol Aspects Med 2017; 56: 25-33
  • 123 Roth JD, Feigh M, Veidal SS. , et al. INT-767 improves histopathological features in a diet-induced ob/ob mouse model of biopsy-confirmed non-alcoholic steatohepatitis. World J Gastroenterol 2018; 24 (02) 195-210
  • 124 Baghdasaryan A, Claudel T, Gumhold J. , et al. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2-/- (Abcb4-/-) mouse cholangiopathy model by promoting biliary HCO 3 output. Hepatology 2011; 54 (04) 1303-1312
  • 125 Reich M, Deutschmann K, Sommerfeld A. , et al. TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro. Gut 2016; 65 (03) 487-501
  • 126 Triantafyllou E, Pop OT, Possamai LA. , et al. MerTK expressing hepatic macrophages promote the resolution of inflammation in acute liver failure. Gut 2018; 67 (02) 333-347
  • 127 Davies SP, Reynolds GM, Stamataki Z. Clearance of apoptotic cells by tissue epithelia: a putative role for hepatocytes in liver efferocytosis. Front Immunol 2018; 9: 44
  • 128 Gao B, Radaeva S, Park O. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J Leukoc Biol 2009; 86 (03) 513-528
  • 129 Liew PX, Lee WY, Kubes P. iNKT Cells Orchestrate a Switch from Inflammation to Resolution of Sterile Liver Injury. Immunity 2017; 47 (04) 752-765.e5
  • 130 Ding BS, Cao Z, Lis R. , et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 2014; 505 (7481): 97-102
  • 131 Selzner N, Selzner M, Odermatt B, Tian Y, Van Rooijen N, Clavien PA. ICAM-1 triggers liver regeneration through leukocyte recruitment and Kupffer cell-dependent release of TNF-alpha/IL-6 in mice. Gastroenterology 2003; 124 (03) 692-700
  • 132 Cressman DE, Greenbaum LE, DeAngelis RA. , et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 1996; 274 (5291): 1379-1383
  • 133 Akerman P, Cote P, Yang SQ. , et al. Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy. Am J Physiol 1992; 263 (4 Pt 1): G579-G585
  • 134 Strey CW, Markiewski M, Mastellos D. , et al. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med 2003; 198 (06) 913-923
  • 135 Michalopoulos GK. Liver regeneration. J Cell Physiol 2007; 213 (02) 286-300
  • 136 Sun R, Gao B. Negative regulation of liver regeneration by innate immunity (natural killer cells/interferon-gamma). Gastroenterology 2004; 127 (05) 1525-1539
  • 137 Shen K, Zheng SS, Park O, Wang H, Sun Z, Gao B. Activation of innate immunity (NK/IFN-gamma) in rat allogeneic liver transplantation: contribution to liver injury and suppression of hepatocyte proliferation. Am J Physiol Gastrointest Liver Physiol 2008; 294 (04) G1070-G1077
  • 138 Raven A, Lu WY, Man TY. , et al. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 2017; 547 (7663): 350-354
  • 139 Reig M, Mariño Z, Perelló C. , et al. Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy. J Hepatol 2016; 65 (04) 719-726
  • 140 Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 2013; 144 (03) 512-527