Homeopathy 2019; 108(03): 201-213
DOI: 10.1055/s-0039-1681062
Original Research Article
The Faculty of Homeopathy

Effect of Homeopathic Medicines on Intestinal Coccidia and Immune Response Cells in Spotted Rose Snapper (Lutjanus guttatus)

Antonia del Pilar Rosero-García
1   Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), La Paz, México
,
2   Centro de Investigaciones Biológicas del Noroeste S. C. (CIBNOR), La Paz, México
,
Silvie Dumas
1   Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), La Paz, México
,
María Cristina Chávez-Sánchez
3   Centro de Investigación en Alimentación Desarrollo A. C. Unidad Mazatlán (CIAD), Mazatlán, Sinaloa, México
,
Araceli Avilés-Quevedo
4   Centro Regional de Investigación Acuícola y Pesquera (CRIAP-INAPESCA), La Paz, México
,
Carmen Rodríguez-Jaramillo
2   Centro de Investigaciones Biológicas del Noroeste S. C. (CIBNOR), La Paz, México
› Author Affiliations
Further Information

Publication History

22 October 2018

24 January 2019

Publication Date:
18 April 2019 (online)

Abstract

Background Homeopathy has been widely applied in freshwater species but rarely in marine fish. Farm stress destabilises host–pathogen equilibrium, favouring parasites and disease. Coccidian endoparasites cause intestinal infections and cell degeneration.

Materials and Methods Naturally parasite-infested juvenile snapper Lutjanus guttatus (n = 430; weight 1.9 ± 0.01 g; length 4.9 ± 0.03 cm) specimens were distributed in group sizes of 43, in 10 fiberglass tanks (100 L) with aeration and continuous water change. Five groups in duplicate were assessed: Passival (PaV); Passival and Phosphoricum acid Similia (PaV–PhA); Passival and Silicea terra Similia (PaV–SiT); Endecto and Infecçoes (End–Inf) and a control (Ethanol) for 45 days. Feed was sprinkled with treatment (5% v/w) and dried to avoid ethanol side-effects. Statistical results were expressed as mean ± standard error of the mean.

Results Intestinal coccidia were recorded histopathologically, with the least incidence attained at T45 with End–Inf treatment (p < 0.001), coinciding with the highest lymphocyte (p = 0.015) count. Fish treated with PaV–PhA recorded a higher percentage of neutrophils (p = 0.015), and those treated with PaV–PhA, PaV–SiT and End–Inf revealed a decrease in lesions, degree of alteration and change in intestine and stomach tissues (p < 0.05). The number of mucous cells in gills was greater (p < 0.001) for End–Inf (43 ± 0.58), PaV–SiT (40 ± 2.89) and PaV–PhA (39 ± 3.46) as compared respectively with T0 and control (19 ± 0.58 and 28 ± 2.31). PaV and PaV–SiT increased carbohydrate reserves in liver (28.4 ± 1.39% and 22.4 ± 0.12%, respectively) compared with T0 and control (3.4 ± 0.32 and 5.6 ± 0.66%). The highest survival rate was 97.7 ± 0.16% in fish treated with PaV and End–Inf.

Conclusion Homeopathic treatments had a positive effect on fish health. Besides the accumulation of metabolic reserves in the liver, homeopathic treatment was associated with mucin increase in gills as well as raised production of lymphocytes and neutrophils in blood, which could act as macrophages against intestinal coccidia.

Highlights

• Homeopathy improves overall health status in juvenile marine fish L. guttatus.


• Human homeopathic medicines increase carbohydrate reserves in liver of this marine fish.


• Veterinary homeopathic medicines reduce intestinal coccidian parasites in this fish species.


• Both medicines increase mucin in gills and increase lymphocytes and neutrophils in fish blood.


 
  • References

  • 1 Ibarra-Castro L, Duncan NJ. GnRHa-induced spawning of wild-caught spotted rose snapper Lutjanus guttatus . Aquaculture 2007; 272: 737-746
  • 2 Alcalá-Carrillo M, Castillo-Vargasmachuca SG, Ponce-Palafox JT. Efectos de la temperatura y salinidad sobre el crecimiento supervivencia de juveniles de pargo Lutjanus guttatus . Lat Am J Aquat Res 2016; 44: 159-164
  • 3 Kinkelin P, Michel C, Ghittino P. Tratado de las Enfermedades de los Peces. Zaragoza, España: Acribia; 1991
  • 4 Balbuena-Rivarola ED, Rios Morinigo VM, Flores-Nava A, Meza J, Galeano A. Manual básico de sanidad piscícola. Ministerio de Agricultura y Ganadería, Viceministerio de Ganadería-Paraguay, Acuicultura y Pesca para América Latina y el Caribe, FAO. Paraguay; 2011. Available at: http://www.fao.org/3/a-as829s.pdf [Retrieved March 24, 2017]
  • 5 García de Lomas-Mier JM, Moriñigo-Gutierrez MA, Retamero-Coro M, Medina-López A. , Eds. Evaluación de la eficacia de las vacunas actualmente utilizadas en cultivos de peces y fijación de pautas para la generación de nuevas vacunas. Centro Tecnológico de la Acuicultura CTAQUA, Junta de Andalucía, Universidad de Málaga. España: Editorial Neosbrand; 2010
  • 6 Gjurčević E, Kužir S, Baždarić B. , et al. New data on Eimeria dicentrarchi (Apicomplexa: Eimeriidae), a common parasite of farmed European sea bass (Dicentrarchus labrax) from the mid-eastern Adriatic. Vet Arh 2017; 87: 77-86
  • 7 Abollo E, Calvo M, Pascual S. Hepatic coccidiosis of the blue whiting, Micromesistius poutassou (Risso), and horse mackerel, Trachurus trachurus (L.), from Galician waters. J Fish Dis 2001; 24: 335-343
  • 8 Dykova I, Lom J. Definition of coccidian. In: Dykova I, Lom J. , eds. Histopathology of Protistan and Myxozoan Infections in Fishes. Czech Republic: Academia Praha; 2007: 89-104
  • 9 Lovy J, Friend SE. Intestinal coccidiosis of anadromous and landlocked alewives, Alosa pseudoharengus, caused by Goussia ameliae n. sp. and G. alosii n. sp. (Apicomplexa: Eimeriidae). Int J Parasitol Parasites Wildl 2015; 4: 159-170
  • 10 Feist SW, Longshaw M. Histopathology of fish parasite infections importance for populations. J Fish Biol 2008; 73: 2143-2160
  • 11 Rosero-García A. Evaluación de medicamentos homeopáticos en el cultivo de juveniles de pargo lunarejo Lutjanus guttatus [Tesis de Maestría]. Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional CICIMAR-IPN. La Paz, BCS. México; 2016: 84
  • 12 Liang K, Leong T. Treatment of cultured golden snapper, Lutjanus johni Bloch, infected with monogeneans. Aquaculture 1992; 106: 1-8
  • 13 Seng LT. Control of parasites in cultured marine finfishes in Southeast Asia--an overview. Int J Parasitol 1997; 27: 1177-1184
  • 14 Pironet F, Jones J. Treatments for ectoparasites and diseases in captive Western Australian dhufish. Aquacult Int 2000; 8: 349-361
  • 15 Sharp N, Diggles B, Poortenaar C, Willis T. Efficacy of Aqui-S, formalin and praziquantel against the monogeneans, Benedenia seriolae and Zeuxapta seriole, infecting yellowtail kingfish Seriola lalandi lalandi in New Zealand. Aquaculture 2004; 236: 67-83
  • 16 Lawrence R, Jeyakumar E. Antimicrobial resistance: a cause for global concern. BMC Proc 2013; 7: S1
  • 17 Mazón-Suástegui JM, García-Bernal M, Saucedo PE, Campa-Córdova Á, Abasolo-Pacheco F. Homeopathy outperforms antibiotics treatment in juvenile scallop Argopecten ventricosus: effects on growth, survival, and immune response. Homeopathy 2017; 106: 18-26
  • 18 Ortíz-Cornejo NL, Tovar-Ramírez D, Abasolo-Pacheco F, Mazón-Suástegui JM. Homeopatía, una alternativa para la acuicultura. Rev Med Homeopat 2017; 10: 28-34
  • 19 Aleixo DL, Bonamin LV, Ferraz FN, Veiga FK, Araujo SM. Homeopathy in parasitic diseases. Int J High Dilution Res 2014; 13: 13-27
  • 20 Braccini GL, Natali MR, Ribeiro RP. , et al. Morpho-functional response of Nile tilapia (Oreochromis niloticus) to a homeopathic complex. Homeopathy 2013; 102: 233-241
  • 21 Bellavite P, Conforti A, Pontarollo F, Ortolani R. Immunology and homeopathy. 2. Cells of the immune system and inflammation. Evid Based Complement Alternat Med 2006; 3: 13-24
  • 22 Toledo MV, Stangarlin JR, Bonato CM. Homeopathy for the control of plant pathogens. In: Mendez VA. (ed). Science against microbial pathogens: communicating current research and technological advances. Badajoz, Spain: Formatex Research Center; 2011: 1063-1067 . Available at: https://pdfs.semanticscholar.org/918e/2c98338378b3019db248e8f31cc37291e28c.pdf
  • 23 Torres CJE. Evaluación de la respuesta inmunológica del Apis Mellífica homeopatizada en cultivos de células mononucleares en sangre periférica [Tesis de Maestría]. Bogotá, Colombia: Universidad Nacional de Colombia; 2012
  • 24 Metcalfe JD, Craig JF. Ethical justification for the use and treatment of fishes in research: an update. J Fish Biol 2011; 78: 393-394
  • 25 García-Gómez A, De la Gándara F, Raja T. Utilización del aceite de clavo, Syzygium aromaticum L. (Merr. & Perry), como un anestésico eficaz y económico para labores rutinarias de manipulación de peces marinos cultivados. Bol Inst Esp Oceanogr 2002; 18: 21-23
  • 26 Rojas LM, Mata C, Oliveros A, Salazar-Lugo R. Histología de branquias, hígado y riñón de juveniles del pez neotropical Colossoma macropomum (Characiformes, Characidae) expuesto a tres temperaturas. Rev Biol Trop 2013; 61: 797-806
  • 27 Cajaraville MP, Bebianno MJ, Blasco J, Porte C, Sarasquete C, Viarengo A. The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. Sci Total Environ 2000; 247: 295-311
  • 28 Ferguson H. Systemic Pathology of Fish: A Text and Atlas of Normal Tissues in Teleosts and their Responses in Disease. 2nd ed. London: Scotian Press; 2006
  • 29 Junqueira LC, Carneiro J. Histología básica. 11a edición. Rio de Janeiro: Guanabara Koogan; 2008
  • 30 Genten F, Terwinghe E, Danguy A. Respiratory system. In: Genten F, Terwinghe E, Danguy A. , eds. Atlas of Fish Histology. Enfield, NH: Science Publishers; 2009
  • 31 Torres RGA, González PS, Peña SE. Descripción anatómica, histológica y ultraestructural de la branquia e hígado de tilapia (Oreochromis niloticus). Int J Morphol 2010; 28: 703-712
  • 32 Byadgi O, Puteri D, Lee JW. , et al. The effect of TLR9 agonist CpG oligodeoxynucleotides on the intestinal immune response of cobia (Rachycentron canadum). J Immunol Res 2014; 2014: 273284
  • 33 Humanson LG. Animal Tissue Techniques. Cuarta edición. San Francisco: WH Freeman and Company Ed.; 1979: 661
  • 34 Sheehan D, Hrapchak BB. Theory and practice of Histotechnology. 2nd ed. Ohio: Battelle Press; 1980: 481
  • 35 Schwaiger J, Wanke R, Adam S, Pawert M, Honnen W, Triebskorn R. The use of histopathological indicators to evaluate contaminant-related stress in fish. J Aquat Ecosyst Stress Recovery 1997; 6: 75-86
  • 36 Poleksic VV, Mitrovic-Tutundzic V. Fish gills as a monitor of sublethal and chronic effects of pollution. In: Muller R, Lloyd R. , eds. Sublethal and Chronic Effects of Pollutants on Freshwater Fish. Oxford: Fishing News Books; 1994
  • 37 Rodríguez-Jaramillo C, Hurtado MA, Romero-Vivas E, Ramírez JL, Manzano JL, Palacios E. Gonadal development and histochemistry of the tropical oyster, Crassostrea corteziensis during an annual reproductive cycle. J Shellfish Res 2008; 27: 1129-1141
  • 38 Lightner D, Pantoja C. A Handbook of Shrimp Pathology and Diagnostic Procedures for Diseases of Cultured Penaeíd Shrimp. Baton Rouge, Louisiana: World Aquaculture Society; 1996
  • 39 Zissu R. Homeopatía y biotipologías. Editions Frison-Roche. Homeopatía, Cap. III. 4. En: Tratado de Homeopatía. Enciclopedia de las Medicinas Naturales. Paris, Francia: Editions Frison-Roche; 1995: 675
  • 40 Nasi TT, Ribeiro D, Lopes AR. Emploi de biotherapiques dans le traitement de souris infectes par Trypanosomia cruzi, sultats preliminaires. Ann Homeopath Fr 1982; 24: 53-62
  • 41 Gomez D, Sunyer JO, Salinas I. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immunol 2013; 35: 1729-1739
  • 42 Del Rio-Zaragoza OB, Fajer-Ávila EJ, Almazán-Rueda P, Abdo de la Parra MI. Hematological characteristics of the spotted rose snapper Lutjanus guttatus (Steindachner, 1869) healthy and naturally infected by dactylogyrid monogeneans. Tissue Cell 2011; 43: 137-142
  • 43 Luque-Lara A. Inmunología de peces. Available at: http://www.encuentros.uma.es/encuentros40/inmunol.htm [Retrieved 18 June 2016]
  • 44 Fernández AB, de Blas I, Ruiz I. El sistema inmune de los teleósteos (I): Células y órganos. AquaTIC (Zaragoza) 2002; 16: 1-15
  • 45 O Neill JG. An in vitro study of polymorphonuclear phagocytosis and the effect of temperature. In: Fish Immunology. London: MJ Manning, MF Tatner, eds. Academic Press; 1985: 47-56
  • 46 Hine PM. The granulocytes of fish. Fish Shellfish Immunol 1992; 2: 79-88
  • 47 Plyzycz B, Flory CM, Galvan I, Bayne CJ. Leukocytes of rainbow trout (Oncorhynchus mykiss) pronephros: cell types producing superoxide anion. Dev Comp Immunol 1989; 13: 217-224
  • 48 Poitevin B, Aubin M, Royer JF. Effet de Belladonna et Ferrum phosphoricum sur la chemiluminiscence des polynucléaires neutrophiles humains. Ann Homeopath Fr 1984; 72: 257-262
  • 49 Benavides-González F. Influencia de B-glucanos y ácido ascórbico en la respuesta inmune del bagre de canal (Ictalurus punctatus) (Rafinesque, 1818) en infecciones con Ligictaluridus floridanus (Mueller, 1936) (Ancyrocephalidae) [Tesis Doctoral]. México: Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas; 2015
  • 50 Sato DYO, Wal R, de Oliveira CC. , et al. Histopathological and immunophenotyping studies on normal and sarcoma 180-bearing mice treated with a complex homeopathic medication. Homeopathy 2005; 94: 26-32
  • 51 Lopes L, Godoy LMF, de Oliveira CC, Gabardo J, Schadeck RJ, de Freitas Buchi D. Phagocytosis, endosomal/lysosomal system and other cellular aspects of macrophage activation by Canova medication. Micron 2006; 37: 277-287
  • 52 Pahlow M. Enciclopedia familiar Everest de las plantas medicinales: Información detallada sobre más de 400 plantas medicinales. España: Editorial Everest; 2000
  • 53 Ramirez-Duarte WF, Rondon-Barragan IS, Vidal Barrios HH, Eslava-Mocha PR. Efectos del glifosato (GP) con énfasis en organismos acuáticos. Orinoquia (Univ Tecnol Llanos Orient) 2004; 7: 70-100
  • 54 Schmale MC, Vicha D, Cacal SM. Degranulation of eosinophilic granule cells in neurofibromas and gastrointestinal tract in the bicolor damselfish. Fish Shellfish Immunol 2004; 17: 53-63
  • 55 Dezfuli BS, Giovinazzo G, Lui A, Giari L. Inflammatory response to Dentitruncus truttae (Acanthocephala) in the intestine of brown trout. Fish Shellfish Immunol 2008; 24: 726-733
  • 56 Lauriano ER, Calò M, Silvestri G, Zaccone D, Pergolizzi S, Lo Cascio P. Mast cells in the intestine and gills of the sea bream, Sparus aurata, exposed to a polychlorinated biphenyl, PCB 126. Acta Histochem 2012; 114: 166-171
  • 57 Cammarata M, Vazzana M, Cervello M, Arizza V, Parrinello N. Spontaneous cytotoxic activity of eosinophilic granule cells separated from the normal peritoneal cavity of Dicentrarchus labrax. Fish Shellfish Immunol 2000; 10: 143-154
  • 58 Dezfuli BS, Giari L, Simoni E, Palazzi D, Manera M. Alteration of rodlet cells in chub caused by herbicide Stam® M-4 (Propanil). J Fish Biol 2003; 63: 232-239
  • 59 Castañeda-Cortés D, Gómez-Ramírez E, Hurtado-Giraldo H. Histopathological alterations of olfactory bulbs of white cachama to a commercial presentation glyphosate (Roundup® Activo). Universidad Militar Nueva Granada. Rev Fac Cs Bas 2015; 11: 8-17
  • 60 Plaul SE. El enigma de las células rodlet. The rodlet cells mystery. Facultad de Ciencias Veterinarias UNLP, Buenos Aires Argentina. Cs Morfol 2011; 13: 1-14
  • 61 Duthie ES. The origin, development and function of the blood cells in certain marine teleosts: Part I. Morphology. J Anat 1939; 73: 396-412
  • 62 Leino RL. Rodlet cells in the gill and intestine of Catostomus commersonii and Perca flavescens: a comparison of their light and electron microscopic cytochemistry with that of mucous and granular cells. Can J Zool 1982; 60: 2768-2782
  • 63 Balabanova LV, Matey VE. The ultrastructure of rodlet cells from different organs in the carp and brook trout. Tsitologiya 1987; 29: 766-770
  • 64 Bielek E. Rodlet cells in teleosts: new ultrastructural observations on the distribution of the cores in trout (Oncorhynchus mykiss, Salmo trutta L.). J Submicrosc Cytol Pathol 2002; 34: 271-278
  • 65 Manera M, Dezfuli BS. Rodlet cells in teleosts: a new insight into their nature and functions. J Fish Biol 2004; 65: 597-619
  • 66 Reite OB. The rodlet cells of teleostean fish: their potential role in host defence in relation to the role of mast cells/eosinophilic granule cells. Fish Shellfish Immunol 2005; 19: 253-267
  • 67 Iger Y, Abraham M. Rodlet cells in the epidermis of fish exposed to stressors. Tissue Cell 1997; 29: 431-438
  • 68 Kramer CR, Potter H. Ultrastructural observations on rodlet-cell development in the head kidney of the southern platyfish, Xiphophorus maculatus (Teleostei: Poeciliidae). Can J Zool 2002; 80: 1422-1436
  • 69 Meyers TR, Sawyer TK, MacLean SA. Henneguya sp. (Cnidospora: Myxosporida) parasitic in the heart of the bluefish, Pomatomus saltatrix . J Parasitol 1977; 63: 890-896
  • 70 Palenzuela O, Álvarez-Pellitero P, Sitjà-Bobadilla A. Glomerular disease associated with Polysporoplasma sparis (Myxozoa) infections in cultured gilthead sea bream, Sparus aurata L. (Pisces: Teleostei). Parasitology 1999; 118 (Pt 3): 245-256
  • 71 Bildet J. Etude de l'action de differentes dilutions de phosphore blanc (Phosphorus) sur l'hepatite toxique du rat [Pharmacy thesis]. Burdeos, Francia; 1975
  • 72 Bildet J, Bonini F, Gendre F, Aubin M, Demarque D, Quilichini R. Etude au microscope electronique de l action de dilutions de phosphorus (15CH) sur l hepatite toxique du rat. Ann Homeopath Fr 1977; 19: 209-219
  • 73 Bernstein RM, Schluter SF, Marchalonis JJ. Immunity. In: Evans DH. , ed. 2nd ed. The Physiology of Fishes. Boca Ratón, New York, Washington DC: CRC Press LLC; 1998: 215-242
  • 74 Manzoor T, Jan U, Shah M, Ganie SA. Variation of lipid and carbohydrate content in Schizothorax esocinus from Dal Lake of Kashmir Valley. Pak J Biol Sci 2014; 17: 447-450
  • 75 Hinton DE, Segner H, Braunbeck T. Toxic responses of the liver. In: Schlenk D, Benson WH. , eds. Target Organ Toxicity in Marine and Freshwater Teleosts. London: Taylor & Francis; 2001: 224
  • 76 Wolf JC, Wolfe MJ. A brief overview of nonneoplastic hepatic toxicity in fish. Toxicol Pathol 2005; 33: 75-85
  • 77 Viegas I, Carvalho RA, Pardal MA, Jones JG. Advances and Applications of Tracer Measurements of Carbohydrate Metabolism in Fish. In: Hakan Türker, ed. New Advances and Contributions to Fish Biology; 2012: 247-269
  • 78 Wardle CS. The changes in blood glucose in Pleuronectes platessa following capture from the wild: stress reaction. J Mar Biol Assoc U K 1972; 52: 635-651
  • 79 Pickering AD, Pottinger TG. Stress responses and disease resistance in salmonid fish: effects of chronic elevation of plasma cortisol. Fish Physiol Biochem 1989; 7: 253-258
  • 80 Thomas P, Robertson L. Plasma cortisol and glucose stress responses of red drum (Sciaenops ocellatus) to handling and shallow water stressors and anesthesia with MS-222, quinaldine sulfate and metomidate. Aquaculture 1991; 96: 69-86
  • 81 Epple A. The endocrine pancreas. In: Hoar WS, Randell DJ. , eds. Fish Physiology, Vol. II. New York: Academic Press; 1969: 275-315
  • 82 Cabrera Páez Y, Aguilar Betancourt C, González-Sansón G. Indicadores morfológicos y reproductivos del pez Gambusia puncticulata (Poeciliidae) en sitios muy contaminados del río Almendares, Cuba. Rev Biol Trop 2008; 56: 1991-2004
  • 83 Valentim-Zabott M, Vargas L, Ribeiro RPR. , et al. Effects of a homeopathic complex in Nile tilapia (Oreochromis niloticus L.) on performance, sexual proportion and histology. Homeopathy 2008; 97: 190-195