Subscribe to RSS
DOI: 10.1055/s-0039-1683971
Prevalence and Association of Congenital Anomalies According to the Maternal Body Mass Index: Cross-Sectional Study
Prevalência e associação de anomalias congênitas de acordo com índice de massa corporal materno: Estudo transversalPublication History
17 September 2018
08 February 2019
Publication Date:
08 April 2019 (online)
Abstract
Objective To evaluate and compare the prevalence of structural congenital anomalies (CAs) according to maternal body mass index (BMI).
Methods The present cross-sectional study involved pregnant women with fetuses diagnosed with structural CAs through morphological ultrasonography between November 2014 and January 2016. The nutritional status of the pregnant women was classified according to the gross value of the body mass index. The pregnant women were categorized into four groups: low weight, adequate weight, overweight, and obesity. Statistical analysis was performed using Stata/SE version 12.0 (Stata Corporation, College Station, TX), with values of p ≤ 0.05 considered statistically significant.
Results A total of 223 pregnant women had fetuses diagnosed with CAs. The prevalence of structural CAs in pregnant women with low weight was of 20.18%, of 43.50% in pregnant women with adequate weight, of 22.87% in pregnant women with overweight, and of 13.45% in pregnant women with obesity. The prevalence of central nervous system (CNS) anomalies and of genitourinary system anomalies was high for the four groups of pregnant women. A positive association was observed between multiple anomalies in pregnant women with adequate weight (prevalence ratio [PR] = 1.65; p ≤ 0.004) and between anomalies of the lymphatic system in obese pregnant women (PR = 4.04, p ≤ 0.000).
Conclusion The prevalence of CNS and genitourinary system anomalies was high in all of the BMI categories. Obese pregnancies were associated with lymphatic system anomalies. Therefore, screening and identification of the risk factors for CAs are important, regardless of the maternal BMI. Our findings reinforce the importance of discussing with pregnant women maternal nutrition and its effect on fetal development and on neonatal outcome.
Resumo
Objetivo Avaliar e comparar a prevalência de anomalias congênitas (ACs) estruturais de acordo com o índice de massa corporal (IMC) materno.
Métodos Estudo transversal envolvendo gestantes com fetos diagnosticados com ACs estruturais por ultrassonografia morfológica entre novembro de 2014 e janeiro de 2016. O estado nutricional das gestantes foi classificado de acordo com o valor bruto do índice de massa corporal. As gestantes foram categorizadas em quatro grupos: baixo peso, peso adequado, sobrepeso e obesidade. A análise estatística foi realizada no programa Stata/SE versão 12.0 (Stata Corporation, College Station, TX), com valores de p ≤0,05 considerados estatisticamente significantes.
Resultados Um total de 223 gestantes tiveram fetos diagnosticados com ACs. A prevalência de AC estrutural em gestantes com baixo peso foi de 20,18%, em gestantes com peso adequado foi de 43,50%, em gestantes com sobrepeso foi de 22,87%, e em gestantes com obesidade foi de 13,45%. A prevalência de anomalias do sistema nervoso central (SNC) e do sistema geniturinário foi alta para os quatro grupos. Observou-se associação positiva entre múltiplas anomalias em gestantes com peso adequado (razão de prevalência [RP] = 1,65; p ≤ 0,004) e entre anomalias do sistema linfático em gestantes obesas (RP = 4,04, p ≤ 0,000).
Conclusão A prevalência das anomalias do SNC e do sistema geniturinário foi alta em todas as categorias de IMC. Gestantes obesas foram associadas a anomalias do sistema linfático. Portanto, o rastreamento e a identificação dos fatores de risco para as AC são importantes, independentemente do IMC materno. Nossos achados reforçam a importância de discutir com gestantes sobre a nutrição materna e seu efeito no desenvolvimento fetal e no desfecho neonatal.
Contributors
All of the authors contributed with the project and data interpretation, the writing of the article, the critical review of the intellectual content, and with the final approval of the version to be published.
-
References
- 1 Dean SV, Lassi ZS, Imam AM, Bhutta ZA. Preconception care: nutritional risks and interventions. Reprod Health 2014; 11 (Suppl. 03) S3 . Doi: 10.1186/1742-4755-11-S3-S3
- 2 Sato AP, Fujimori E. Nutritional status and weight gain in pregnant women. Rev Lat Am Enfermagem 2012; 20 (03) 462-468 . Doi: 10.1590/S0104-11692012000300006
- 3 Leddy MA, Power ML, Schulkin J. The impact of maternal obesity on maternal and fetal health. Rev Obstet Gynecol 2008; 1 (04) 170-178
- 4 Abu-Saad K, Fraser D. Maternal nutrition and birth outcomes. Epidemiol Rev 2010; 32: 5-25 . Doi: 10.1093/epirev/mxq001
- 5 Triunfo S, Lanzone A. Impact of maternal under nutrition on obstetric outcomes. J Endocrinol Invest 2015; 38 (01) 31-38 . Doi: 10.1007/s40618-014-0168-4
- 6 Tenenbaum-Gavish K, Hod M. Impact of maternal obesity on fetal health. Fetal Diagn Ther 2013; 34 (01) 1-7 . Doi: 10.1159/000350170
- 7 Chu SY, Kim SY, Lau J. , et al. Maternal obesity and risk of stillbirth: a metaanalysis. Am J Obstet Gynecol 2007; 197 (03) 223-228 . Doi: 10.1016/j.ajog.2007.03.027
- 8 Ramachenderan J, Bradford J, McLean M. Maternal obesity and pregnancy complications: a review. Aust N Z J Obstet Gynaecol 2008; 48 (03) 228-235 . Doi: 10.1111/j.1479-828X.2008.00860.x
- 9 Ebrahimi F, Shariff ZM, Tabatabaei SZ, Fathollahi MS, Mun CY, Nazari M. Relationship between sociodemographics, dietary intake, and physical activity with gestational weight gain among pregnant women in Rafsanjan City, Iran. J Health Popul Nutr 2015; 33 (01) 168-176
- 10 World Health Organization. Congenital anomalies. Fact Sheets. September 7, 2016 http://www.who.int/mediacentre/factsheets/fs370/en/ . Accessed January 25, 2017
- 11 Sitkin NA, Farmer DL. Congenital anomalies in the context of global surgery. Semin Pediatr Surg 2016; 25 (01) 15-18 . Doi: 10.1053/j.sempedsurg.2015.09.004
- 12 Correa A, Marcinkevage J. Prepregnancy obesity and the risk of birth defects: an update. Nutr Rev 2013; 71 (Suppl. 01) S68-S77 . Doi: 10.1111/nure.12058
- 13 Hildebrand E, Gottvall T, Blomberg M. Maternal obesity and detection rate of fetal structural anomalies. Fetal Diagn Ther 2013; 33 (04) 246-251 . Doi: 10.1159/000343219
- 14 Villar J, Merialdi M, Gülmezoglu AM. , et al. Nutritional interventions during pregnancy for the prevention or treatment of maternal morbidity and preterm delivery: an overview of randomized controlled trials. J Nutr 2003; 133 (05) (Suppl. 02) 1606S-1625S . Doi: 10.1093/jn/133.5.1606S
- 15 Macumber I, Schwartz S, Leca N. Maternal obesity is associated with congenital anomalies of the kidney and urinary tract in offspring. Pediatr Nephrol 2017; 32 (04) 635-642 . Doi: 10.1007/s00467-016-3543-x
- 16 Blomberg MI, Källén B. Maternal obesity and morbid obesity: the risk for birth defects in the offspring. Birth Defects Res A Clin Mol Teratol 2010; 88 (01) 35-40 . Doi: 10.1002/bdra.20620
- 17 Stothard KJ, Tennant PW, Bell R, Rankin J. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA 2009; 301 (06) 636-650 . Doi: 10.1001/jama.2009.113
- 18 Taruscio D, Arriola L, Baldi F. , et al. European recommendations for primary prevention of congenital anomalies: a joined effort of EUROCAT and EUROPLAN projects to facilitate inclusion of this topic in the National Rare Disease Plans. Public Health Genomics 2015; 18: 184-191 . Doi: 10.1159/000360602
- 19 Atalah E, Castillo C, Castro R, Aldea A. [Proposal of a new standard for the nutritional assessment of pregnant women]. Rev Med Chil 1997; 125 (12) 1429-1436
- 20 Institute of Medicine. National Research Council. Committee to Reexamine IOM Pregnancy Weight Guidelines. Weight Gain During Pregnancy: Reexamining the Guidelines. Washington, DC: The National Academies Press; 2009 https://www.cbsnews.com/htdocs/pdf/052809_pregnancy.pdf . Accessed January 25, 2017
- 21 Marwah S, Sharma S, Kaur H, Gupta M, Goraya SPS. Surveillance of congenital malformations and their possible risk factors in a teaching hospital in Punjab. Int J Reprod Contracept Obstet Gynecol 2014; 3 (01) 162-167 . Doi: 10.5455/2320-1770.ijrcog20140332
- 22 Sunitha T, Rebekah K, Muni T. , et al. Risk factors for congenital anomalies in high risk pregnant women: a large study from South India. Egypt J Med Hum Genet 2017; 18 (01) 79-85 . Doi: 10.1016/j.ejmhg.2016.04.001
- 23 Prashar N, Gupta S, Thakur R, Sharma P, Sharma G. A study of incidence of congenital anomalies in newborn: a hospital based study. Int J Res Med Sci. 2016; 4 (06) 2050-2053
- 24 Li K, Wahlqvist ML, Li D. Nutrition, one-carbon metabolism and neural tube: a review. Nutrients 2016; 8 (11) E741 . Doi: 10.3390/nu8110741
- 25 Singh N, Kumble Bhat V, Tiwari A. , et al. A homozygous mutation in TRIM36 causes autosomal recessive anencephaly in an Indian family. Hum Mol Genet 2017; 26 (06) 1104-1114 . Doi: 10.1093/hmg/ddx020
- 26 Siega-Riz AM, Viswanathan M, Moos MK. , et al. A systematic review of outcomes of maternal weight gain according to the Institute of Medicine recommendations: birthweight, fetal growth, and postpartum weight retention. Am J Obstet Gynecol 2009; 201 (04) 339.e1-339.e14 . Doi: 10.1016/j.ajog.2009.07.002
- 27 Athukorala C, Rumbold AR, Willson KJ, Crowther CA. The risk of adverse pregnancy outcomes in women who are overweight or obese. BMC Pregnancy Childbirth 2010; 10: 56 . Doi: 10.1186/1471-2393-10-56
- 28 Rankin J, Tennant PW, Stothard KJ, Bythell M, Summerbell CD, Bell R. Maternal body mass index and congenital anomaly risk: a cohort study. Int J Obes 2010; 34 (09) 1371-1380 . Doi: 10.1038/ijo.2010.66
- 29 Marchi J, Berg M, Dencker A, Olander EK, Begley C. Risks associated with obesity in pregnancy, for the mother and baby: a systematic review of reviews. Obes Rev 2015; 16 (08) 621-638 . Doi: 10.1111/obr.12288
- 30 Sachdeva P, Patel BG, Patel BK. Drug use in pregnancy; a point to ponder!. Indian J Pharm Sci 2009; 71 (01) 1-7 . Doi: 10.4103/0250-474X.51941
- 31 Crighton E, Abelsohn A, Blake J. , et al. Beyond alcohol and tobacco smoke: Are we doing enough to reduce fetal toxicant exposure?. J Obstet Gynaecol Can 2016; 38 (01) 56-59 . Doi: 10.1016/j.jogc.2015.10.009
- 32 Ortega-García JA, Gutierrez-Churango JE, Sánchez-Sauco MF. , et al. Head circumference at birth and exposure to tobacco, alcohol and illegal drugs during early pregnancy. Childs Nerv Syst 2012; 28 (03) 433-439 . Doi: 10.1007/s00381-011-1607-6
- 33 Calone A, Madi JM, Araújo BF. , et al. [Congenital defects: maternal and perinatal features]. Rev AMRIGS. 2009; 53: 226-230
- 34 Silva RMM, Mazotti BR, Zilly A, Ferreira H, Caldeira S. [Epidemiologic factors correlated to the risk for fetal death: integrative review]. Arq Ciênc Saúde. 2016; 23: 9-15 . Doi: 10.17696/2318-3691.23.2.2016.221
- 35 Noronha Neto C, Souza ASR, Moraes Filho OB, Noronha AMB. [Validation of ultrasound diagnosis of fetal anomalies at a reference center in Pernambuco]. Rev Assoc Med Bras (1992) 2009; 55 (05) 541-546 . Doi: 10.1590/S0104-42302009000500016
- 36 Rasouly HM, Lu W. Lower urinary tract development and disease. Wiley Interdiscip Rev Syst Biol Med 2013; 5 (03) 307-342 . Doi: 10.1002/wsbm.1212
- 37 Best KE, Tennant PW, Bell R, Rankin J. Impact of maternal body mass index on the antenatal detection of congenital anomalies. BJOG 2012; 119 (12) 1503-1511 . Doi: 10.1111/j.1471-0528.2012.03462.x
- 38 Dashe JS, McIntire DD, Twickler DM. Maternal obesity limits the ultrasound evaluation of fetal anatomy. J Ultrasound Med 2009; 28 (08) 1025-1030 . Doi: 10.7863/jum.2009.28.8.1025
- 39 Zozzaro-Smith P, Gray LM, Bacak SJ, Thornburg LL. Limitations of aneuploidy and anomaly detection in the obese patient. J Clin Med 2014; 3 (03) 795-808 . Doi: 10.3390/jcm3030795
- 40 Persson M, Cnattingius S, Villamor E. , et al. Risk of major congenital malformations in relation to maternal overweight and obesity severity: cohort study of 1.2 million singletons. BMJ 2017; 357: j2563 . Doi: 10.1136/bmj.j2563
- 41 Longstreet B, Balakrishnan K, Saltzman B, Perkins JA, Dighe M. Prognostic value of a simplified anatomically based nomenclature for fetal nuchal lymphatic anomalies. Otolaryngol Head Neck Surg 2015; 152 (02) 342-347 . Doi: 10.1177/0194599814559190
- 42 Bernal LM, López G. Diagnóstico prénatal: retrospectiva. Nova 2014; 12 (21) 23-36
- 43 Ebara S. Nutritional role of folate. Congenit Anom (Kyoto) 2017; 57 (05) 138-141 . Doi: 10.1111/cga.12233
- 44 Mattar R, Torloni MR, Betrán AP, Merialdi M. [Obesity and pregnancy]. Rev Bras Ginecol Obstet 2009; 31 (03) 107-110 . Doi: 10.1590/S0100-72032009000300001
- 45 Zhao Z. TGFβ and Wnt in cardiac outflow tract defects in offspring of diabetic pregnancies. Birth Defects Res B Dev Reprod Toxicol 2014; 101 (05) 364-370 . Doi: 10.1002/bdrb.21120
- 46 Saad MI, Abdelkhalek TM, Saleh MM, Haiba MM, Tawfik SH, Kamel MA. Maternal diabetes impairs oxidative and inflammatory response in murine placenta. Springerplus 2016; 5: 532 . Doi: 10.1186/s40064-016-2180-y
- 47 Gabbe SG, Graves CR. Management of diabetes mellitus complicating pregnancy. Obstet Gynecol 2003; 102 (04) 857-868 . Doi: 10.1016/j.obstetgynecol.2003.07.001
- 48 Liu X, Liu G, Wang P. , et al. Prevalence of congenital heart disease and its related risk indicators among 90,796 Chinese infants aged less than 6 months in Tianjin. Int J Epidemiol 2015; 44 (03) 884-893 . Doi: 10.1093/ije/dyv107
- 49 Persson M, Pasupathy D, Hanson U, Westgren M, Norman M. Pre-pregnancy body mass index and the risk of adverse outcome in type 1 diabetic pregnancies: a population-based cohort study. BMJ Open 2012; 2 (01) e000601 . Doi: 10.1136/bmjopen-2011-000601