Semin Respir Crit Care Med 2019; 40(01): 066-080
DOI: 10.1055/s-0039-1685159
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Acute Respiratory Distress Syndrome: Respiratory Monitoring and Pulmonary Physiology

Remi Coudroy
1   Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
2   Keenan Research Centre and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
3   Service de Réanimation Médicale, CHU de Poitiers, Poitiers, France
4   INSERM CIC1402, groupe ALIVE, Université de Poitiers, Poitiers, France
,
Lu Chen
1   Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
2   Keenan Research Centre and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
,
Tài Pham
1   Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
2   Keenan Research Centre and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
,
Thomas Piraino
1   Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
2   Keenan Research Centre and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
,
Irene Telias
1   Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
2   Keenan Research Centre and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
,
Laurent Brochard
1   Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
2   Keenan Research Centre and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
› Author Affiliations
Further Information

Publication History

Publication Date:
06 May 2019 (online)

Abstract

The high prevalence of acute respiratory distress syndrome (ARDS), its morbidity and mortality continue to fare a huge burden in the intensive care unit. More than 40 years ago, experimental studies have highlighted that, albeit essential, mechanical ventilation could be harmful to lungs and more recently to the diaphragm. Despite life-saving advances in mechanical ventilation (such as low tidal-volume ventilation, neuromuscular blockers agents, or prone positioning), a recent international observational study reported that most ARDS patients were not appropriately monitored. The monitoring capabilities of ventilators, in particular the simple interaction of the patient and the mechanical ventilation, are very powerful but are underutilized. This lack of monitoring may contribute to the persisting poor outcome of patients with ARDS. Providing a more careful ventilation is a priority to improve patients' outcomes. To achieve this goal, it is of paramount importance to better understand the complex relationship between the patient and the ventilator: the impact of ventilator settings on lungs during passive controlled ventilation, but also of patient's breathing efforts on lungs during assisted ventilation. In this review we present available tools to monitor respiratory mechanics at the bedside aiming at optimizing and personalizing mechanical ventilation. Hopefully, this careful management can decrease mortality of patients with ARDS in the future.

 
  • References

  • 1 ARDS Definition Task Force. Ranieri VM, Rubenfeld GD, Thompson BT. , et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307 (23) 2526-2533
  • 2 Bellani G, Laffey JG, Pham T. , et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016; 315 (08) 788-800
  • 3 Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med 2013; 369 (22) 2126-2136
  • 4 Lu Q, Vieira SR, Richecoeur J. , et al. A simple automated method for measuring pressure-volume curves during mechanical ventilation. Am J Respir Crit Care Med 1999; 159 (01) 275-282
  • 5 Akoumianaki E, Maggiore SM, Valenza F. , et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med 2014; 189 (05) 520-531
  • 6 Carteaux G, Mancebo J, Mercat A. , et al. Bedside adjustment of proportional assist ventilation to target a predefined range of respiratory effort. Crit Care Med 2013; 41 (09) 2125-2132
  • 7 Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet 1967; 2 (7511): 319-323
  • 8 Falke KJ, Pontoppidan H, Kumar A, Leith DE, Geffin B, Laver MB. Ventilation with end-expiratory pressure in acute lung disease. J Clin Invest 1972; 51 (09) 2315-2323
  • 9 Maunder RJ, Shuman WP, McHugh JW, Marglin SI, Butler J. Preservation of normal lung regions in the adult respiratory distress syndrome. Analysis by computed tomography. JAMA 1986; 255 (18) 2463-2465
  • 10 Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med 2005; 31 (06) 776-784
  • 11 Gammon RB, Shin MS, Groves Jr RH, Hardin JM, Hsu C, Buchalter SE. Clinical risk factors for pulmonary barotrauma: a multivariate analysis. Am J Respir Crit Care Med 1995; 152 (4, Pt 1): 1235-1240
  • 12 Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 1988; 137 (05) 1159-1164
  • 13 Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 1997; 99 (05) 944-952
  • 14 Muscedere JG, Mullen JB, Gan K, Slutsky AS. Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 1994; 149 (05) 1327-1334
  • 15 Kumar A, Falke KJ, Geffin B. , et al. Continuous positive-pressure ventilation in acute respiratory failure. N Engl J Med 1970; 283 (26) 1430-1436
  • 16 Dhainaut JF, Devaux JY, Monsallier JF, Brunet F, Villemant D, Huyghebaert MF. Mechanisms of decreased left ventricular preload during continuous positive pressure ventilation in ARDS. Chest 1986; 90 (01) 74-80
  • 17 Mekontso Dessap A, Boissier F, Charron C. , et al. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med 2016; 42 (05) 862-870
  • 18 Dantzker DR, Brook CJ, Dehart P, Lynch JP, Weg JG. Ventilation-perfusion distributions in the adult respiratory distress syndrome. Am Rev Respir Dis 1979; 120 (05) 1039-1052
  • 19 Radermacher P, Maggiore SM, Mercat A. Fifty years of research in ARDS. Gas exchange in acute respiratory distress syndrome. Am J Respir Crit Care Med 2017; 196 (08) 964-984
  • 20 Nuckton TJ, Alonso JA, Kallet RH. , et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 2002; 346 (17) 1281-1286
  • 21 Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 1974; 110 (05) 556-565
  • 22 Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342 (18) 1301-1308
  • 23 Rouby JJ, Lherm T, Martin de Lassale E. , et al. Histologic aspects of pulmonary barotrauma in critically ill patients with acute respiratory failure. Intensive Care Med 1993; 19 (07) 383-389
  • 24 Morales MMB, Pires-Neto RC, Inforsato N. , et al. Small airway remodeling in acute respiratory distress syndrome: a study in autopsy lung tissue. Crit Care 2011; 15 (01) R4
  • 25 Chen L, Del Sorbo L, Grieco DL. , et al. Airway closure in acute respiratory distress syndrome: an underestimated and misinterpreted phenomenon. Am J Respir Crit Care Med 2018; 197 (01) 132-136
  • 26 Meade MO, Cook DJ, Guyatt GH. , et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008; 299 (06) 637-645
  • 27 Mercat A, Richard J-CM, Vielle B. , et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008; 299 (06) 646-655
  • 28 Brower RG, Lanken PN, MacIntyre N. , et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004; 351 (04) 327-336
  • 29 Talmor D, Sarge T, Malhotra A. , et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 2008; 359 (20) 2095-2104
  • 30 Cavalcanti AB, Suzumura EA, Laranjeira LN. , et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low peep on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2017; 318 (14) 1335-1345
  • 31 Jaber S, Petrof BJ, Jung B. , et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med 2011; 183 (03) 364-371
  • 32 Levine S, Nguyen T, Taylor N. , et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 2008; 358 (13) 1327-1335
  • 33 Goligher EC, Dres M, Fan E. , et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med 2018; 197 (02) 204-213
  • 34 Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med 2017; 195 (04) 438-442
  • 35 Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med 2013; 41 (02) 536-545
  • 36 Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med 2012; 40 (05) 1578-1585
  • 37 Goligher EC, Fan E, Herridge MS. , et al. Evolution of diaphragm thickness during mechanical ventilation. impact of inspiratory effort. Am J Respir Crit Care Med 2015; 192 (09) 1080-1088
  • 38 Goligher EC, Brochard LJ, Reid WD. , et al. Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure. Lancet Respir Med 2019; 7 (01) 90-98
  • 39 Akoumianaki E, Lyazidi A, Rey N. , et al. Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest 2013; 143 (04) 927-938
  • 40 Lynch-Smith D, Thompson CL, Pickering RG, Wan JY. Education on patient-ventilator synchrony, clinicians' knowledge level, and duration of mechanical ventilation. Am J Crit Care 2016; 25 (06) 545-551
  • 41 Loring SH, Topulos GP, Hubmayr RD. Transpulmonary pressure: the importance of precise definitions and limiting assumptions. Am J Respir Crit Care Med 2016; 194 (12) 1452-1457
  • 42 Barberis L, Manno E, Guérin C. Effect of end-inspiratory pause duration on plateau pressure in mechanically ventilated patients. Intensive Care Med 2003; 29 (01) 130-134
  • 43 Bellani G, Grassi A, Sosio S, Foti G. Plateau and driving pressure in the presence of spontaneous breathing. Intensive Care Med 2019; 45 (01) 97-98
  • 44 Boussarsar M, Thierry G, Jaber S, Roudot-Thoraval F, Lemaire F, Brochard L. Relationship between ventilatory settings and barotrauma in the acute respiratory distress syndrome. Intensive Care Med 2002; 28 (04) 406-413
  • 45 Terragni PP, Rosboch G, Tealdi A. , et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 2007; 175 (02) 160-166
  • 46 Suter PM, Fairley B, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 1975; 292 (06) 284-289
  • 47 Grasso S, Fanelli V, Cafarelli A. , et al. Effects of high versus low positive end-expiratory pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med 2005; 171 (09) 1002-1008
  • 48 Amato MB, Barbas CS, Medeiros DM. , et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998; 338 (06) 347-354
  • 49 Amato MBP, Meade MO, Slutsky AS. , et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372 (08) 747-755
  • 50 Chiumello D, Cressoni M, Colombo A. , et al. The assessment of transpulmonary pressure in mechanically ventilated ARDS patients. Intensive Care Med 2014; 40 (11) 1670-1678
  • 51 Yoshida T, Amato MBP, Grieco DL. , et al. Esophageal manometry and regional transpulmonary pressure in lung injury. Am J Respir Crit Care Med 2018; 197 (08) 1018-1026
  • 52 Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes?. Am J Respir Crit Care Med 1998; 158 (01) 3-11
  • 53 Talmor D, Sarge T, O'Donnell CR. , et al. Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med 2006; 34 (05) 1389-1394
  • 54 Grasso S, Terragni P, Birocco A. , et al. ECMO criteria for influenza A (H1N1)-associated ARDS: role of transpulmonary pressure. Intensive Care Med 2012; 38 (03) 395-403
  • 55 Mezidi M, Guérin C. Complete assessment of respiratory mechanics during pressure support ventilation. Intensive Care Med 2019; 45 (04) 557-558
  • 56 Loring SH, Pecchiari M, Della Valle P, Monaco A, Gentile G, D'Angelo E. Maintaining end-expiratory transpulmonary pressure prevents worsening of ventilator-induced lung injury caused by chest wall constriction in surfactant-depleted rats. Crit Care Med 2010; 38 (12) 2358-2364
  • 57 Fumagalli J, Berra L, Zhang C. , et al. Transpulmonary pressure describes lung morphology during decremental positive end-expiratory pressure trials in obesity. Crit Care Med 2017; 45 (08) 1374-1381
  • 58 Bachmann MC, Morais C, Bugedo G. , et al. Electrical impedance tomography in acute respiratory distress syndrome. Crit Care 2018; 22 (01) 263
  • 59 Frerichs I, Amato MBP, van Kaam AH. , et al; TREND study group. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax 2017; 72 (01) 83-93
  • 60 Frerichs I, Dargaville PA, van Genderingen H, Morel DR, Rimensberger PC. Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation. Am J Respir Crit Care Med 2006; 174 (07) 772-779
  • 61 Blankman P, Hasan D, Erik G, Gommers D. Detection of ‘best’ positive end-expiratory pressure derived from electrical impedance tomography parameters during a decremental positive end-expiratory pressure trial. Crit Care 2014; 18 (03) R95
  • 62 Yoshida T, Engelberts D, Otulakowski G. , et al. Continuous negative abdominal pressure: mechanism of action and comparison with prone position. J Appl Physiol (1985) 2018; 125 (01) 107-116
  • 63 Yoshida T, Engelberts D, Otulakowski G. , et al. Continuous negative abdominal pressure reduces ventilator-induced lung injury in a porcine model. Anesthesiology 2018; 129 (01) 163-172
  • 64 Eronia N, Mauri T, Maffezzini E. , et al. Bedside selection of positive end-expiratory pressure by electrical impedance tomography in hypoxemic patients: a feasibility study. Ann Intensive Care 2017; 7 (01) 76
  • 65 Costa ELV, Borges JB, Melo A. , et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. In: Pinsky M, Brochard L, Hedenstierna G, Antonelli M, eds. Applied Physiology in Intensive Care Medicine 1. Berlin, Heidelberg: Springer; 2012: 165-170
  • 66 Jonson B, Richard J-C, Straus C, Mancebo J, Lemaire F, Brochard L. Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 1999; 159 (4, Pt 1): 1172-1178
  • 67 Coudroy R, Lu C, Chen L, Demoule A, Brochard L. Mechanism of airway closure in acute respiratory distress syndrome: a possible role of surfactant depletion. Intensive Care Med 2019; 45 (02) 290-291
  • 68 Yonis H, Mortaza S, Baboi L, Mercat A, Guérin C. Expiratory flow limitation assessment in patients with acute respiratory distress syndrome. A reappraisal. Am J Respir Crit Care Med 2018; 198 (01) 131-134
  • 69 Vieira SR, Puybasset L, Lu Q. , et al. A scanographic assessment of pulmonary morphology in acute lung injury. Significance of the lower inflection point detected on the lung pressure-volume curve. Am J Respir Crit Care Med 1999; 159 (5, Pt 1): 1612-1623
  • 70 Gattinoni L, Mascheroni D, Torresin A. , et al. Morphological response to positive end expiratory pressure in acute respiratory failure. Computerized tomography study. Intensive Care Med 1986; 12 (03) 137-142
  • 71 Gattinoni L, Caironi P, Cressoni M. , et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 2006; 354 (17) 1775-1786
  • 72 Malbouisson LM, Muller JC, Constantin JM, Lu Q, Puybasset L, Rouby JJ. ; CT Scan ARDS Study Group. Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2001; 163 (06) 1444-1450
  • 73 Chen L, Brochard L. Lung volume assessment in acute respiratory distress syndrome. Curr Opin Crit Care 2015; 21 (03) 259-264
  • 74 Chen L, Sklar M, Dres M, Goligher EC. Different definitions of lung recruitment by computed tomography scan. Am J Respir Crit Care Med 2016; 193 (11) 1314-1315
  • 75 Chiumello D, Marino A, Brioni M. , et al. Lung recruitment assessed by respiratory mechanics and by CT scan: what is the relationship?. Am J Respir Crit Care Med 2016; 193 (11) 1254-1263
  • 76 Amato MB, Santiago RR. The recruitability paradox. Am J Respir Crit Care Med 2016; 193 (11) 1192-1195
  • 77 Dantzker DR, Lynch JP, Weg JG. Depression of cardiac output is a mechanism of shunt reduction in the therapy of acute respiratory failure. Chest 1980; 77 (05) 636-642
  • 78 Goligher EC, Kavanagh BP, Rubenfeld GD. , et al. Oxygenation response to positive end-expiratory pressure predicts mortality in acute respiratory distress syndrome. A secondary analysis of the LOVS and ExPress trials. Am J Respir Crit Care Med 2014; 190 (01) 70-76
  • 79 Chen L, Chen G-Q, Shore K. , et al. Implementing a bedside assessment of respiratory mechanics in patients with acute respiratory distress syndrome. Crit Care 2017; 21 (01) 84
  • 80 Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 1970; 28 (05) 596-608
  • 81 Pelosi P, Goldner M, McKibben A. , et al. Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 2001; 164 (01) 122-130
  • 82 Yoshida T, Torsani V, Gomes S. , et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 2013; 188 (12) 1420-1427
  • 83 Yoshida T, Nakahashi S, Nakamura MAM. , et al. Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort. Am J Respir Crit Care Med 2017; 196 (05) 590-601
  • 84 Heunks L, Ottenheijm C. Diaphragm-protective mechanical ventilation to improve outcomes in ICU patients?. Am J Respir Crit Care Med 2018; 197 (02) 150-152
  • 85 Dres M, Rittayamai N, Brochard L. Monitoring patient-ventilator asynchrony. Curr Opin Crit Care 2016; 22 (03) 246-253
  • 86 Telias I, Brochard L, Goligher EC. Is my patient's respiratory drive (too) high?. Intensive Care Med 2018; 44 (11) 1936-1939
  • 87 Reid WD, Huang J, Bryson S, Walker DC, Belcastro AN. Diaphragm injury and myofibrillar structure induced by resistive loading. J Appl Physiol (1985) 1994; 76 (01) 176-184
  • 88 Cabello B, Mancebo J. Work of breathing. Intensive Care Med 2006; 32 (09) 1311-1314
  • 89 Mancebo J, Isabey D, Lorino H, Lofaso F, Lemaire F, Brochard L. Comparative effects of pressure support ventilation and intermittent positive pressure breathing (IPPB) in non-intubated healthy subjects. Eur Respir J 1995; 8 (11) 1901-1909
  • 90 Goligher EC, Laghi F, Detsky ME. , et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med 2015; 41 (04) 642-649
  • 91 Vivier E, Mekontso Dessap A, Dimassi S. , et al. Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation. Intensive Care Med 2012; 38 (05) 796-803
  • 92 Harper CJ, Shahgholi L, Cieslak K, Hellyer NJ, Strommen JA, Boon AJ. Variability in diaphragm motion during normal breathing, assessed with B-mode ultrasound. J Orthop Sports Phys Ther 2013; 43 (12) 927-931
  • 93 Goligher EC, Dres M, Fan E. , et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med 2018; 197 (02) 204-213
  • 94 Telias I, Damiani F, Brochard L. The airway occlusion pressure (P0.1) to monitor respiratory drive during mechanical ventilation: increasing awareness of a not-so-new problem. Intensive Care Med 2018; 44 (09) 1532-1535
  • 95 Holle RH, Schoene RB, Pavlin EJ. Effect of respiratory muscle weakness on P0.1 induced by partial curarization. J Appl Physiol 1984; 57 (04) 1150-1157
  • 96 Nava S, Bruschi C, Fracchia C, Braschi A, Rubini F. Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. Eur Respir J 1997; 10 (01) 177-183
  • 97 Kallet RH, Hemphill III JC, Dicker RA. , et al. The spontaneous breathing pattern and work of breathing of patients with acute respiratory distress syndrome and acute lung injury. Respir Care 2007; 52 (08) 989-995
  • 98 Mauri T, Grasselli G, Suriano G. , et al. Control of respiratory drive and effort in extracorporeal membrane oxygenation patients recovering from severe acute respiratory distress syndrome. Anesthesiology 2016; 125 (01) 159-167
  • 99 Kera T, Aihara A, Inomata T. Reliability of airway occlusion pressure as an index of respiratory motor output. Respir Care 2013; 58 (05) 845-849
  • 100 Conti G, Cinnella G, Barboni E, Lemaire F, Harf A, Brochard L. Estimation of occlusion pressure during assisted ventilation in patients with intrinsic PEEP. Am J Res Critical Care Med 1996; 154 (4 I): 907-912
  • 101 Jubran A, Tobin MJ. Pathophysiologic basis of acute respiratory distress in patients who fail a trial of weaning from mechanical ventilation. Am J Respir Crit Care Med 1997; 155 (03) 906-915
  • 102 Rittayamai N, Beloncle F, Goligher EC. , et al. Effect of inspiratory synchronization during pressure-controlled ventilation on lung distension and inspiratory effort. Ann Intensive Care 2017; 7 (01) 100
  • 103 Thille AW, Cabello B, Galia F, Lyazidi A, Brochard L. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med 2008; 34 (08) 1477-1486
  • 104 Pletsch-Assuncao R, Caleffi Pereira M, Ferreira JG. , et al. Accuracy of invasive and noninvasive parameters for diagnosing ventilatory overassistance during pressure support ventilation. Crit Care Med 2018; 46 (03) 411-417
  • 105 Gilstrap D, MacIntyre N. Patient-ventilator interactions. Implications for clinical management. Am J Respir Crit Care Med 2013; 188 (09) 1058-1068
  • 106 Blanch L, Quintel M. Lung-brain cross talk in the critically ill. Intensive Care Med 2017; 43 (04) 557-559
  • 107 Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 2006; 32 (10) 1515-1522
  • 108 Goligher EC, Ferguson ND, Brochard LJ. Clinical challenges in mechanical ventilation. Lancet 2016; 387 (10030): 1856-1866
  • 109 Terzi N, Pelieu I, Guittet L. , et al. Neurally adjusted ventilatory assist in patients recovering spontaneous breathing after acute respiratory distress syndrome: physiological evaluation. Crit Care Med 2010; 38 (09) 1830-1837
  • 110 Pham T, Telias I, Piraino T, Yoshida T, Brochard LJ. Asynchrony consequences and management. Crit Care Clin 2018; 34 (03) 325-341
  • 111 Chao DC, Scheinhorn DJ, Stearn-Hassenpflug M. Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest 1997; 112 (06) 1592-1599
  • 112 de Wit M, Pedram S, Best AM, Epstein SK. Observational study of patient-ventilator asynchrony and relationship to sedation level. J Crit Care 2009; 24 (01) 74-80
  • 113 Vaporidi K, Babalis D, Chytas A. , et al. Clusters of ineffective efforts during mechanical ventilation: impact on outcome. Intensive Care Med 2017; 43 (02) 184-191
  • 114 Blanch L, Villagra A, Sales B. , et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med 2015; 41 (04) 633-641
  • 115 Papazian L, Forel J-M, Gacouin A. , et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010; 363 (12) 1107-1116
  • 116 Branson RD, Blakeman TC, Robinson BR. Asynchrony and dyspnea. Respir Care 2013; 58 (06) 973-989
  • 117 Bosma K, Ferreyra G, Ambrogio C. , et al. Patient-ventilator interaction and sleep in mechanically ventilated patients: pressure support versus proportional assist ventilation. Crit Care Med 2007; 35 (04) 1048-1054
  • 118 Costa R, Spinazzola G, Cipriani F. , et al. A physiologic comparison of proportional assist ventilation with load-adjustable gain factors (PAV+) versus pressure support ventilation (PSV). Intensive Care Med 2011; 37 (09) 1494-1500
  • 119 Alexopoulou C, Kondili E, Plataki M, Georgopoulos D. Patient-ventilator synchrony and sleep quality with proportional assist and pressure support ventilation. Intensive Care Med 2013; 39 (06) 1040-1047
  • 120 Schmidt M, Kindler F, Cecchini J. , et al. Neurally adjusted ventilatory assist and proportional assist ventilation both improve patient-ventilator interaction. Crit Care 2015; 19: 56
  • 121 de Haro C, López-Aguilar J, Magrans R. , et al. Double cycling during mechanical ventilation: frequency, mechanisms, and physiologic implications. Crit Care Med 2018; 46 (09) 1385-1392
  • 122 Beitler JR, Sands SA, Loring SH. , et al. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med 2016; 42 (09) 1427-1436
  • 123 Chanques G, Kress JP, Pohlman A. , et al. Impact of ventilator adjustment and sedation-analgesia practices on severe asynchrony in patients ventilated in assist-control mode. Crit Care Med 2013; 41 (09) 2177-2187
  • 124 Pohlman MC, McCallister KE, Schweickert WD. , et al. Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med 2008; 36 (11) 3019-3023
  • 125 Kallet RH, Luce JM. Detection of patient-ventilator asynchrony during low tidal volume ventilation, using ventilator waveform graphics. Respir Care 2002; 47 (02) 183-185
  • 126 Georgopoulos D, Prinianakis G, Kondili E. Bedside waveforms interpretation as a tool to identify patient-ventilator asynchronies. Intensive Care Med 2006; 32 (01) 34-47
  • 127 Sinderby C, Navalesi P, Beck J. , et al. Neural control of mechanical ventilation in respiratory failure. Nat Med 1999; 5 (12) 1433-1436
  • 128 Blanch L, Sales B, Montanya J. , et al. Validation of the Better Care® system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study. Intensive Care Med 2012; 38 (05) 772-780