Am J Perinatol 2020; 37(06): 577-588
DOI: 10.1055/s-0039-1685492
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

How Can Pelvic MRI with Diffusion-Weighted Imaging Help My Pregnant Patient?

1   Division of Abdominal Imaging, Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
,
Irene M. Hotalen
2   Intellirad Imaging, Miami, Florida
,
Emily S. Miller
3   Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
,
Emma L. Barber
3   Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
,
Shohreh Shahabi
4   Division of Gynecology and Oncology, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
,
Frank H. Miller
1   Division of Abdominal Imaging, Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
› Author Affiliations
Funding None.
Further Information

Publication History

20 September 2018

28 February 2019

Publication Date:
12 April 2019 (online)

Abstract

The purpose of this review is to explain how diffusion-weighted imaging (DWI) is used during magnetic resonance imaging (MRI) exams in pregnant patients for specific maternal indications, including evaluation of acute pelvic pain, adnexal masses, cancer diagnosis and staging, and morbidly adherent placenta. While ultrasound is often the appropriate initial imaging for evaluating a pregnant patient, MRI can be helpful when a pelvic ultrasound is indeterminate. MRI has advantages in that it does not use ionizing radiation and has shown no known deleterious effects to the fetus. The use of gadolinium-based contrast is controversial during pregnancy. DWI is a functional sequence performed during an MRI exam, which is valuable in the absence of gadolinium contrast, and can increase the visibility of inflammation, abscesses, and tumors. Case examples will be presented to demonstrate the utility and added value of DWI over conventional anatomic T1- and T2-weighted imaging in diagnosis of maternal disease in the pregnant patient's pelvis.

 
  • References

  • 1 Committee on Obstetric Practice. Committee opinion no. 723: guidelines for diagnostic imaging during pregnancy and lactation. Obstet Gynecol 2017; 130 (04) e210-e216
  • 2 Kok RD, de Vries MM, Heerschap A, van den Berg PP. Absence of harmful effects of magnetic resonance exposure at 1.5 T in utero during the third trimester of pregnancy: a follow-up study. Magn Reson Imaging 2004; 22 (06) 851-854
  • 3 American College of Obstetricians and Gynecologists' Committee on Obstetric Practice. Committee opinion no. 656 summary: guidelines for diagnostic imaging during pregnancy and lactation. Obstet Gynecol 2016; 127 (02) 418
  • 4 Ray JG, Vermeulen MJ, Bharatha A, Montanera WJ, Park AL. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA 2016; 316 (09) 952-961
  • 5 Strizek B, Jani JC, Mucyo E. , et al. Safety of MR imaging at 1.5 T in fetuses: a retrospective case-control study of birth weights and the effects of acoustic noise. Radiology 2015; 275 (02) 530-537
  • 6 Roth CG, Marzio DH, Guglielmo FF. Contributions of magnetic resonance imaging to gastroenterological practice: MRIs for GIs. Dig Dis Sci 2018; 63 (05) 1102-1122
  • 7 American College of Radiology Manual on Contrast Media, version 10.3 (2018). Available at: https://www.acr.org/-/media/ACR/Files/Clinical-Resources/Contrast_Media.pdf . Accessed April 1, 2019
  • 8 Patenaude Y, Pugash D, Lim K. , et al; Diagnostic Imaging Committee; Society of Obstetricians and Gynaecologists of Canada. The use of magnetic resonance imaging in the obstetric patient. J Obstet Gynaecol Can 2014; 36 (04) 349-363
  • 9 Guglielmo FF, Kania LM, Ahmad HM, Roth CG, Mitchell DG. Interpreting body MRI cases: what you need to know to get started. Abdom Radiol (NY) 2016; 41 (11) 2248-2269
  • 10 Tremblay E, Thérasse E, Thomassin-Naggara I, Trop I. Quality initiatives: guidelines for use of medical imaging during pregnancy and lactation. Radiographics 2012; 32 (03) 897-911
  • 11 Ditkofsky NG, Singh A. Challenges in magnetic resonance imaging for suspected acute appendicitis in pregnant patients. Curr Probl Diagn Radiol 2015; 44 (04) 297-302
  • 12 Malik SJ, Beqiri A, Price AN, Teixeira JN, Hand JW, Hajnal JV. Specific absorption rate in neonates undergoing magnetic resonance procedures at 1.5 T and 3 T. NMR Biomed 2015; 28 (03) 344-352
  • 13 Weisstanner C, Gruber GM, Brugger PC. , et al. Fetal MRI at 3T-ready for routine use?. Br J Radiol 2017; 90 (1069): 20160362
  • 14 Tocchio S, Kline-Fath B, Kanal E, Schmithorst VJ, Panigrahy A. MRI evaluation and safety in the developing brain. Semin Perinatol 2015; 39 (02) 73-104
  • 15 Einstein A. Investigations on the Theory of the Brownian Movement. New York, NY: Dover; 1956
  • 16 Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol 2007; 188 (06) 1622-1635
  • 17 Inci E, Kilickesmez O, Hocaoglu E, Aydin S, Bayramoglu S, Cimilli T. Utility of diffusion-weighted imaging in the diagnosis of acute appendicitis. Eur Radiol 2011; 21 (04) 768-775
  • 18 Kato H, Kanematsu M, Uchiyama M, Yano R, Furui T, Morishige K. Diffusion-weighted imaging of ovarian torsion: usefulness of apparent diffusion coefficient (ADC) values for the detection of hemorrhagic infarction. Magn Reson Med Sci 2014; 13 (01) 39-44
  • 19 Leeuwenburgh MM, Jensch S, Gratama JW. , et al; OPTIMAP study group. MRI features associated with acute appendicitis. Eur Radiol 2014; 24 (01) 214-222
  • 20 Leeuwenburgh MM, Wiarda BM, Bipat S. , et al. Acute appendicitis on abdominal MR images: training readers to improve diagnostic accuracy. Radiology 2012; 264 (02) 455-463
  • 21 Li XH, Sun CH, Mao R. , et al. Diffusion-weighted MRI enables to accurately grade inflammatory activity in patients of ileocolonic Crohn's disease: results from an observational study. Inflamm Bowel Dis 2017; 23 (02) 244-253
  • 22 Oto A, Zhu F, Kulkarni K, Karczmar GS, Turner JR, Rubin D. Evaluation of diffusion-weighted MR imaging for detection of bowel inflammation in patients with Crohn's disease. Acad Radiol 2009; 16 (05) 597-603
  • 23 Özdemir O, Metin Y, Metin NO, Küpeli A. Contribution of diffusion-weighted imaging to conventional MRI for detection of haemorrhagic infarction in ovary torsion. BMC Med Imaging 2017; 17 (01) 56
  • 24 Andersson RE, Lambe M. Incidence of appendicitis during pregnancy. Int J Epidemiol 2001; 30 (06) 1281-1285
  • 25 Babaknia A, Parsa H, Woodruff JD. Appendicitis during pregnancy. Obstet Gynecol 1977; 50 (01) 40-44
  • 26 McGory ML, Zingmond DS, Tillou A, Hiatt JR, Ko CY, Cryer HM. Negative appendectomy in pregnant women is associated with a substantial risk of fetal loss. J Am Coll Surg 2007; 205 (04) 534-540
  • 27 Israel GM, Malguria N, McCarthy S, Copel J, Weinreb J. MRI vs. ultrasound for suspected appendicitis during pregnancy. J Magn Reson Imaging 2008; 28 (02) 428-433
  • 28 Rosen MP, Ding A, Blake MA. , et al. ACR Appropriateness Criteria® right lower quadrant pain--suspected appendicitis. J Am Coll Radiol 2011; 8 (11) 749-755
  • 29 Repplinger MD, Levy JF, Peethumnongsin E. , et al. Systematic review and meta-analysis of the accuracy of MRI to diagnose appendicitis in the general population. J Magn Reson Imaging 2016; 43 (06) 1346-1354
  • 30 Dunn DP, Lee KS, Smith MP, Mortele KJ. Nononcologic applications of diffusion-weighted imaging in the gastrointestinal system. Am J Roentgenol 2015; 204 (04) 758-767
  • 31 Wi SA, Kim DJ, Cho ES, Kim KA. Diagnostic performance of MRI for pregnant patients with clinically suspected appendicitis. Abdom Radiol (NY) 2018; 43 (12) 3456-3461
  • 32 Ferguson CB, Mahsud-Dornan S, Patterson RN. Inflammatory bowel disease in pregnancy. BMJ 2008; 337: a427
  • 33 Stern MD, Kopylov U, Ben-Horin S, Apter S, Amitai MM. Magnetic resonance enterography in pregnant women with Crohn's disease: case series and literature review. BMC Gastroenterol 2014; 14: 146
  • 34 Kucharzik T, Kannengiesser K, Petersen F. The use of ultrasound in inflammatory bowel disease. Ann Gastroenterol 2017; 30 (02) 135-144
  • 35 Novak KL, Kaplan GG, Panaccione R. , et al. A simple ultrasound score for the accurate detection of inflammatory activity in Crohn's disease. Inflamm Bowel Dis 2017; 23 (11) 2001-2010
  • 36 Bruining DH, Zimmermann EM, Loftus Jr EV, Sandborn WJ, Sauer CG, Strong SA. ; Society of Abdominal Radiology Crohn's Disease-Focused Panel. Consensus recommendations for evaluation, interpretation, and utilization of computed tomography and magnetic resonance enterography in patients with small bowel Crohn's disease. Radiology 2018; 286 (03) 776-799
  • 37 Hahnemann ML, Dechene A, Kathemann S. , et al. Diagnostic value of diffusion-weighted imaging (DWI) for the assessment of the small bowel in patients with inflammatory bowel disease. Clin Radiol 2017; 72 (01) 95.e1-95.e8
  • 38 Westerland O, Griffin N. Magnetic resonance enterography in Crohn's disease. Semin Ultrasound CT MR 2016; 37 (04) 282-291
  • 39 Seo N, Park SH, Kim KJ. , et al. MR enterography for the evaluation of small-bowel inflammation in Crohn disease by using diffusion-weighted imaging without intravenous contrast material: a prospective noninferiority study. Radiology 2016; 278 (03) 762-772
  • 40 Schmid-Tannwald C, Schmid-Tannwald CM, Morelli JN. , et al. The role of diffusion-weighted MRI in assessment of inflammatory bowel disease. Abdom Radiol (NY) 2016; 41 (08) 1484-1494
  • 41 Park SH. DWI at MR enterography for evaluating bowel inflammation in Crohn disease. Am J Roentgenol 2016; 207 (01) 40-48
  • 42 Ninivaggi V, Missere M, Restaino G. , et al. MR-enterography with diffusion weighted imaging: ADC values in normal and pathological bowel loops, a possible threshold ADC value to differentiate active from inactive Crohn's disease. Eur Rev Med Pharmacol Sci 2016; 20 (21) 4540-4546
  • 43 Choi SH, Kim KW, Lee JY, Kim KJ, Park SH. Diffusion-weighted magnetic resonance enterography for evaluating bowel inflammation in Crohn's disease: a systematic review and meta-analysis. Inflamm Bowel Dis 2016; 22 (03) 669-679
  • 44 Pendsé DA, Makanyanga JC, Plumb AA. , et al. Diffusion-weighted imaging for evaluating inflammatory activity in Crohn's disease: comparison with histopathology, conventional MRI activity scores, and faecal calprotectin. Abdom Radiol (NY) 2017; 42 (01) 115-123
  • 45 Stanescu-Siegmund N, Nimsch Y, Wunderlich AP. , et al. Quantification of inflammatory activity in patients with Crohn's disease using diffusion weighted imaging (DWI) in MR enteroclysis and MR enterography. Acta Radiol 2017; 58 (03) 264-271
  • 46 Qi F, Jun S, Qi QY. , et al. Utility of the diffusion-weighted imaging for activity evaluation in Crohn's disease patients underwent magnetic resonance enterography. BMC Gastroenterol 2015; 15: 12
  • 47 Khan AT, Shehmar M, Gupta JK. Uterine fibroids: current perspectives. Int J Womens Health 2014; 6: 95-114
  • 48 Sato K, Yuasa N, Fujita M, Fukushima Y. Clinical application of diffusion-weighted imaging for preoperative differentiation between uterine leiomyoma and leiomyosarcoma. Am J Obstet Gynecol 2014; 210 (04) 368.e1-368.e8
  • 49 Li HM, Liu J, Qiang JW, Zhang H, Zhang GF, Ma F. Diffusion-weighted imaging for differentiating uterine leiomyosarcoma from degenerated leiomyoma. J Comput Assist Tomogr 2017; 41 (04) 599-606
  • 50 Kotecha HM, McIntosh LJ, Lo HS, Chen BY, Dupuis CS. What to expect when they are expecting: magnetic resonance imaging of the acute abdomen and pelvis in pregnancy. Curr Probl Diagn Radiol 2017; 46 (06) 423-431
  • 51 Duigenan S, Oliva E, Lee SI. Ovarian torsion: diagnostic features on CT and MRI with pathologic correlation. Am J Roentgenol 2012; 198 (02) W122-31
  • 52 Fujii S, Mukuda N, Nosaka K, Fukunaga T, Inoue C, Ogawa T. The mechanism causing high-signal intensity on diffusion-weighted imaging in adnexal torsion: two case reports. Magn Reson Med Sci 2017; 16 (03) 262-264
  • 53 Kilickesmez O, Tasdelen N, Yetimoglu B, Kayhan A, Cihangiroglu M, Gurmen N. Diffusion-weighted imaging of adnexal torsion. Emerg Radiol 2009; 16 (05) 399-401
  • 54 Wang T, Li W, Wu X. , et al. Tubo-ovarian abscess (with/without pseudotumor area) mimicking ovarian malignancy: role of diffusion-weighted MR imaging with apparent diffusion coefficient values. PLoS One 2016; 11 (02) e0149318
  • 55 Li W, Zhang Y, Cui Y, Zhang P, Wu X. Pelvic inflammatory disease: evaluation of diagnostic accuracy with conventional MR with added diffusion-weighted imaging. Abdom Imaging 2013; 38 (01) 193-200
  • 56 Schwartz N, Timor-Tritsch IE, Wang E. Adnexal masses in pregnancy. Clin Obstet Gynecol 2009; 52 (04) 570-585
  • 57 Adusumilli S, Hussain HK, Caoili EM. , et al. MRI of sonographically indeterminate adnexal masses. Am J Roentgenol 2006; 187 (03) 732-740
  • 58 Forstner R, Thomassin-Naggara I, Cunha TM. , et al. ESUR recommendations for MR imaging of the sonographically indeterminate adnexal mass: an update. Eur Radiol 2017; 27 (06) 2248-2257
  • 59 Imaoka I, Wada A, Kaji Y. , et al. Developing an MR imaging strategy for diagnosis of ovarian masses. Radiographics 2006; 26 (05) 1431-1448
  • 60 Thomassin-Naggara I, Fedida B, Sadowski E. , et al. Complex US adnexal masses during pregnancy: is pelvic MR imaging accurate for characterization?. Eur J Radiol 2017; 93: 200-208
  • 61 Chung BM, Park SB, Lee JB, Park HJ, Kim YS, Oh YJ. Magnetic resonance imaging features of ovarian fibroma, fibrothecoma, and thecoma. Abdom Imaging 2015; 40 (05) 1263-1272
  • 62 Fujii S, Kakite S, Nishihara K. , et al. Diagnostic accuracy of diffusion-weighted imaging in differentiating benign from malignant ovarian lesions. J Magn Reson Imaging 2008; 28 (05) 1149-1156
  • 63 Kierans AS, Bennett GL, Mussi TC. , et al. Characterization of malignancy of adnexal lesions using ADC entropy: comparison with mean ADC and qualitative DWI assessment. J Magn Reson Imaging 2013; 37 (01) 164-171
  • 64 Namimoto T, Awai K, Nakaura T, Yanaga Y, Hirai T, Yamashita Y. Role of diffusion-weighted imaging in the diagnosis of gynecological diseases. Eur Radiol 2009; 19 (03) 745-760
  • 65 Thomassin-Naggara I, Balvay D, Rockall A. , et al. Added value of assessing adnexal masses with advanced MRI techniques. BioMed Res Int 2015; 2015: 785206
  • 66 Davarpanah AH, Kambadakone A, Holalkere NS, Guimaraes AR, Hahn PF, Lee SI. Diffusion MRI of uterine and ovarian masses: identifying the benign lesions. Abdom Radiol (NY) 2016; 41 (12) 2466-2475
  • 67 Thomassin-Naggara I, Toussaint I, Perrot N. , et al. Characterization of complex adnexal masses: value of adding perfusion- and diffusion-weighted MR imaging to conventional MR imaging. Radiology 2011; 258 (03) 793-803
  • 68 Takeuchi M, Matsuzaki K, Harada M. Computed diffusion-weighted imaging for differentiating decidualized endometrioma from ovarian cancer. Eur J Radiol 2016; 85 (05) 1016-1019
  • 69 Kang BK, Na DG, Ryoo JW, Byun HS, Roh HG, Pyeun YS. Diffusion-weighted MR imaging of intracerebral hemorrhage. Korean J Radiol 2001; 2 (04) 183-191
  • 70 Nougaret S, Tirumani SH, Addley H, Pandey H, Sala E, Reinhold C. Pearls and pitfalls in MRI of gynecologic malignancy with diffusion-weighted technique. Am J Roentgenol 2013; 200 (02) 261-276
  • 71 Lee NK, Kim S, Kim KH. , et al. Diffusion-weighted magnetic resonance imaging in the differentiation of endometriomas from hemorrhagic cysts in the ovary. Acta Radiol 2016; 57 (08) 998-1005
  • 72 Dhanda S, Thakur M, Kerkar R, Jagmohan P. Diffusion-weighted imaging of gynecologic tumors: diagnostic pearls and potential pitfalls. Radiographics 2014; 34 (05) 1393-1416
  • 73 Whittaker CS, Coady A, Culver L, Rustin G, Padwick M, Padhani AR. Diffusion-weighted MR imaging of female pelvic tumors: a pictorial review. Radiographics 2009; 29 (03) 759-774
  • 74 Morice P, Uzan C, Gouy S, Verschraegen C, Haie-Meder C. Gynaecological cancers in pregnancy. Lancet 2012; 379 (9815): 558-569
  • 75 Campos FG. Colorectal cancer in young adults: a difficult challenge. World J Gastroenterol 2017; 23 (28) 5041-5044
  • 76 Siegel RL, Fedewa SA, Anderson WF. , et al. Colorectal cancer incidence patterns in the United States, 1974-2013. J Natl Cancer Inst 2017 109. (08). Doi: 10.1093/jnci/djw322
  • 77 Amant F, Han SN, Gziri MM, Vandenbroucke T, Verheecke M, Van Calsteren K. Management of cancer in pregnancy. Best Pract Res Clin Obstet Gynaecol 2015; 29 (05) 741-753
  • 78 de Haan J, Vandecaveye V, Han SN, Van de Vijver KK, Amant F. Difficulties with diagnosis of malignancies in pregnancy. Best Pract Res Clin Obstet Gynaecol 2016; 33: 19-32
  • 79 Han SN, Amant F, Michielsen K. , et al. Feasibility of whole-body diffusion-weighted MRI for detection of primary tumour, nodal and distant metastases in women with cancer during pregnancy: a pilot study. Eur Radiol 2018; 28 (05) 1862-1874
  • 80 Liu B, Gao S, Li S. A comprehensive comparison of CT, MRI, positron emission tomography or positron emission tomography/CT, and diffusion weighted imaging-MRI for detecting the lymph nodes metastases in patients with cervical cancer: a meta-analysis based on 67 studies. Gynecol Obstet Invest 2017; 82 (03) 209-222
  • 81 Wang YT, Li YC, Yin LL, Pu H. Can diffusion-weighted magnetic resonance imaging predict survival in patients with cervical cancer? A meta-analysis. Eur J Radiol 2016; 85 (12) 2174-2181
  • 82 Low RN, Sebrechts CP, Barone RM, Muller W. Diffusion-weighted MRI of peritoneal tumors: comparison with conventional MRI and surgical and histopathologic findings--a feasibility study. Am J Roentgenol 2009; 193 (02) 461-470
  • 83 Fadl S, Moshiri M, Fligner CL, Katz DS, Dighe M. Placental imaging: normal appearance with review of pathologic findings. Radiographics 2017; 37 (03) 979-998
  • 84 Allen BC, Leyendecker JR. Placental evaluation with magnetic resonance. Radiol Clin North Am 2013; 51 (06) 955-966
  • 85 D'Antonio F, Iacovella C, Palacios-Jaraquemada J, Bruno CH, Manzoli L, Bhide A. Prenatal identification of invasive placentation using magnetic resonance imaging: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2014; 44 (01) 8-16
  • 86 Vahanian SA, Vintzileos AM. Placental implantation abnormalities: a modern approach. Curr Opin Obstet Gynecol 2016; 28 (06) 477-484
  • 87 Mar WA, Berggruen S, Atueyi U. , et al. Ultrasound imaging of placenta accreta with MR correlation. Ultrasound Q 2015; 31 (01) 23-33
  • 88 Derman AY, Nikac V, Haberman S, Zelenko N, Opsha O, Flyer M. MRI of placenta accreta: a new imaging perspective. Am J Roentgenol 2011; 197 (06) 1514-1521
  • 89 Azour L, Besa C, Lewis S, Kamath A, Oliver ER, Taouli B. The gravid uterus: MR imaging and reporting of abnormal placentation. Abdom Radiol (NY) 2016; 41 (12) 2411-2423
  • 90 Rahaim NS, Whitby EH. The MRI features of placental adhesion disorder and their diagnostic significance: systematic review. Clin Radiol 2015; 70 (09) 917-925
  • 91 Leyendecker JR, DuBose M, Hosseinzadeh K. , et al. MRI of pregnancy-related issues: abnormal placentation. Am J Roentgenol 2012; 198 (02) 311-320
  • 92 Sannananja B, Ellermeier A, Hippe DS. , et al. Utility of diffusion-weighted MR imaging in the diagnosis of placenta accreta spectrum abnormality. Abdom Radiol (NY) 2018; 43 (11) 3147-3156
  • 93 Morita S, Ueno E, Fujimura M, Muraoka M, Takagi K, Fujibayashi M. Feasibility of diffusion-weighted MRI for defining placental invasion. J Magn Reson Imaging 2009; 30 (03) 666-671
  • 94 Masselli G, Weston M, Spencer J. The role of imaging in the diagnosis and management of renal stone disease in pregnancy. Clin Radiol 2015; 70 (12) 1462-1471
  • 95 Dierickx I, Meylaerts LJ, Van Holsbeke CD. , et al. Incarceration of the gravid uterus: diagnosis and preoperative evaluation by magnetic resonance imaging. Eur J Obstet Gynecol Reprod Biol 2014; 179: 191-197
  • 96 Manganaro L, Bernardo S, Antonelli A, Vinci V, Saldari M, Catalano C. Fetal MRI of the central nervous system: state-of-the-art. Eur J Radiol 2017; 93: 273-283
  • 97 van Doorn M, Oude Rengerink K, Newsum EA, Reneman L, Majoie CB, Pajkrt E. Added value of fetal MRI in fetuses with suspected brain abnormalities on neurosonography: a systematic review and meta-analysis. J Matern Fetal Neonatal Med 2016; 29 (18) 2949-2961