RSS-Feed abonnieren

DOI: 10.1055/s-0039-1687715
An Overview of Robotics in Functional Neurosurgery
Publikationsverlauf
Received: 25. September 2018
Accepted: 29. Oktober 2018
Publikationsdatum:
22. April 2019 (online)

Abstract
Stereotactic techniques are used in a wide range of neurosurgical procedures. The procedures demand a high degree of spatial accuracy and minimal error. There are diverse functional surgeries that require stereotactic procedures, including deep brain stimulation, brain biopsies, and epilepsy procedures. Though the disease processes are diverse, all these procedures require accurate targeting of deep structures without visual guidance. The use of robots for stereotactic procedures is a natural progression in the surgeon's quest for higher accuracy and lower complications. This paper reviews the role of robots in stereotactic procedures and outlines current status of robots in stereotactic procedures. The shortcomings of current systems and an outline of an ideal stereotactic device are presented.
-
References
- 1 Ashitava G. Robotics: Fundamental Concepts and Analysis. New Delhi, India: Oxford University Press; 2006
- 2 Kaushik A, Bhutani G, Venkata PPK, Dwarakanath TA, Moiyadi A. Image based data preparation for neuronavigation. 2nd Int 17th Natl Conf Mach Mech Ina 2015. 2015: 1-9 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015174336&partnerID=40&md5=6e41228898bb547ad4f9ade-564b2e380
- 3 Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 1988; 35 (02) 153-160
- 4 Sutherland GR, McBeth PB, Louw DF. NeuroArm: an MR compatible robot for microsurgery. Int Congr Ser 2003; 1256: 504-508
- 5 Sutherland GR, Wolfsberger S, Lama S, Zarei-nia K. The Evolution of neuroArm. Neurosurgery 2013; 72 (Suppl. 01) A27-A32 http://dx.doi.org/10.1227/NEU.0b013e318270da19
- 6 Widmann G, Schullian P, Ortler M, Bale R. Frameless stereotactic targeting devices: technical features, targeting errors and clinical results. Int J Med Robot 2012; 8 (01) 1-16
- 7 Dlaka D, Ŝvaco M, Chudy D. et al. Brain biopsy performed with the RONNA G3 system: a case study on using a novel robotic navigation device for stereotactic neurosurgery. Int J Med Robot 2018; 14 (01) 1-7
- 8 Xu F, Jin H, Yang X. et al. Improved accuracy using a modified registration method of ROSA in deep brain stimulation surgery. Neurosurg Focus 2018; 45 (02) E18
- 9 Suligoj F, Svaco M, Jerbic B, Sekoranja B, Vidakovic J. Automated marker localization in the planning phase of robotic neurosurgery. IEEE Access 2017; 5: 12265-12274
- 10 Finlay PA, Morgan P. Pathfinder image guided robot for neurosurgery. Ind Rob 2003; 30 (01) 30-34
- 11 Marcus HJ, Vakharia VN, Ourselin S, Duncan J, Tisdall M, Aquilina K. Robot-assisted stereotactic brain biopsy: systematic review and bibliometric analysis. Childs Nerv Syst 2018; ••• 1-11
- 12 Correa-Arana K, Vivas-Albán OA, Sabater-Navarro JM, Correa-Arana K, Vivas-Albán OA, Sabater-Navarro JM. Neurosurgery and brain shift: review of the state of the art and main contributions of robotics Neurocirugía y desplazamientos cerebrales: una revisión del estado del arte y principales contribuciones desde la robótica Cómo citar/How to cite. 2017; 20 (40) 123-7799 http://www.scielo.org.co/pdf/teclo/v20n40/v20n40a10.pdf
- 13 Faria C, Erlhagen W, Rito M, De Momi E, Ferrigno G, Bicho E. Review of robotic technology for stereotactic neurosurgery. IEEE Rev Biomed Eng 2015; 8: 125-137
- 14 Dogangil G, Davies BL, Rodriguez y BaenaF. A review of medical robotics for minimally invasive soft tissue surgery. Proc Inst Mech Eng H 2010; 224 (05) 653-679