Digestive Disease Interventions 2019; 03(02): 098-106
DOI: 10.1055/s-0039-1688436
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA

Fusion Imaging in the Guidance of Thermal Ablations

Duccio Rossi
1   Postgraduate School of Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
2   Department of Interventional Radiology, IEO, European Institute of Oncology IRCSS, Via Giuseppe Ripamonti Milan, Italy
,
Luca Nicosia
1   Postgraduate School of Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
,
Guido Bonomo
2   Department of Interventional Radiology, IEO, European Institute of Oncology IRCSS, Via Giuseppe Ripamonti Milan, Italy
,
Paolo Della Vigna
2   Department of Interventional Radiology, IEO, European Institute of Oncology IRCSS, Via Giuseppe Ripamonti Milan, Italy
,
Daniele Maiettini
2   Department of Interventional Radiology, IEO, European Institute of Oncology IRCSS, Via Giuseppe Ripamonti Milan, Italy
,
Franco Orsi
2   Department of Interventional Radiology, IEO, European Institute of Oncology IRCSS, Via Giuseppe Ripamonti Milan, Italy
,
Giovanni Mauri
2   Department of Interventional Radiology, IEO, European Institute of Oncology IRCSS, Via Giuseppe Ripamonti Milan, Italy
› Institutsangaben
Weitere Informationen

Publikationsverlauf

06. Dezember 2018

12. März 2019

Publikationsdatum:
07. Mai 2019 (online)

Abstract

Image-guided thermal ablations are having an increasingly widespread effect on the treatment of several different abdominal conditions, and particularly on the treatment of liver and kidney tumors. In other conditions, such as in the case of pancreatic cancers, image-guided thermal ablations are still under investigation, but some studies showed promising results. Regardless the target organ to be treated, imaging represents one of the most important aspects for a safe and effective application of these techniques. To improve the image guidance in thermal ablations, some systems have been developed to fuse together two or more imaging modalities, providing the operator a real-time visualization of different information during the treatment. In the present review, the principles of fusion imaging will be described, and the principal application in the abdomen will be illustrated.

 
  • References

  • 1 Livraghi T, Meloni F, Di Stasi M. , et al. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice?. Hepatology 2008; 47 (01) 82-89
  • 2 Choi D, Lim HK, Rhim H. , et al. Percutaneous radiofrequency ablation for early-stage hepatocellular carcinoma as a first-line treatment: long-term results and prognostic factors in a large single-institution series. Eur Radiol 2007; 17 (03) 684-692
  • 3 Keane MG, Bramis K, Pereira SP, Fusai GK. Systematic review of novel ablative methods in locally advanced pancreatic cancer. World J Gastroenterol 2014; 20 (09) 2267-2278
  • 4 Mauri G, Sconfienza LM, Pescatori LC. , et al. Technical success, technique efficacy and complications of minimally-invasive imaging-guided percutaneous ablation procedures of breast cancer: A systematic review and meta-analysis. Eur Radiol 2017; 27 (08) 3199-3210
  • 5 Ahmed M, Brace CL, Lee Jr FT, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology 2011; 258 (02) 351-369
  • 6 Shyn PB, Mauri G, Alencar RO. , et al. Percutaneous imaging-guided cryoablation of liver tumors: predicting local progression on 24-hour MRI. AJR Am J Roentgenol 2014; 203 (02) W181-91
  • 7 Liu F-Y, Yu X-L, Liang P. , et al. Microwave ablation assisted by a real-time virtual navigation system for hepatocellular carcinoma undetectable by conventional ultrasonography. Eur J Radiol 2012; 81 (07) 1455-1459
  • 8 Ahmed M, Solbiati L, Brace CL. , et al; International Working Group on Image-guided Tumor Ablation; Interventional Oncology Sans Frontières Expert Panel; Technology Assessment Committee of the Society of Interventional Radiology; Standard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe. Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update. Radiology 2014; 273 (01) 241-260
  • 9 Mauri G, Cova L, De Beni S. , et al. Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Intervent Radiol 2015; 38 (01) 143-151
  • 10 Mauri G, Porazzi E, Cova L. , et al. Intraprocedural contrast-enhanced ultrasound (CEUS) in liver percutaneous radiofrequency ablation: clinical impact and health technology assessment. Insights Imaging 2014; 5 (02) 209-216
  • 11 Jo PC, Jang HJ, Burns PN, Burak KW, Kim TK, Wilson SR. Integration of contrast-enhanced US into a multimodality approach to imaging of nodules in a cirrhotic liver: how I do it. Radiology 2017; 282 (02) 317-331
  • 12 Samanci C, Sobhani F, Ucbilek E. , et al. Magnetic resonance imaging in diagnosis and monitoring of hepatocellular carcinoma in liver transplantation: a comprehensive review. Ann Transplant 2016; 21: 68-76
  • 13 Park HJ, Lee JM, Park SB, Lee JB, Jeong YK, Yoon JH. Comparison of knowledge-based iterative model reconstruction and hybrid reconstruction techniques for liver CT evaluation of hypervascular hepatocellular carcinoma. J Comput Assist Tomogr 2016; 40 (06) 863-871
  • 14 Shyn PB, Tatli S, Sahni VA. , et al. PET/CT-guided percutaneous liver mass biopsies and ablations: targeting accuracy of a single 20 s breath-hold PET acquisition. Clin Radiol 2014; 69 (04) 410-415
  • 15 Shyn PB, Tatli S, Sainani NI. , et al. Minimizing image misregistration during PET/CT-guided percutaneous interventions with monitored breath-hold PET and CT acquisitions. J Vasc Interv Radiol 2011; 22 (09) 1287-1292
  • 16 Tempany CM, Jayender J, Kapur T. , et al. Multimodal imaging for improved diagnosis and treatment of cancers. Cancer 2015; 121 (06) 817-827
  • 17 Maybody M, Stevenson C, Solomon SB. Overview of navigation systems in image-guided interventions. Tech Vasc Interv Radiol 2013; 16 (03) 136-143
  • 18 Mauri G. Expanding role of virtual navigation and fusion imaging in percutaneous biopsies and ablation. Abdom Imaging 2015; 40 (08) 3238-3239
  • 19 Mauri G, Nicosia L, Varano GM. , et al. Tips and tricks for a safe and effective image-guided percutaneous renal tumour ablation. Insights Imaging 2017; 8 (03) 357-363
  • 20 Mauri G, Nicosia L, Varano GM. , et al. Unusual tumour ablations: report of difficult and interesting cases. Ecancermedicalscience 2017; 11: 733
  • 21 Ewertsen C, Săftoiu A, Gruionu LG, Karstrup S, Nielsen MB. Real-time image fusion involving diagnostic ultrasound. AJR Am J Roentgenol 2013; 200 (03) W249-55
  • 22 Mauri G, De Beni S, Forzoni L. , et al. Virtual navigator automatic registration technology in abdominal application. 2014 36th Annu Int Conf IEEE Eng Med Biol Soc EMBC 2014; 2014: 5570-5574 . doi:10.1109/EMBC.2014.6944889.
  • 23 Lee MW, Rhim H, Cha DI. , et al. Percutaneous radiofrequency ablation of hepatocellular carcinoma: fusion imaging guidance for management of lesions with poor conspicuity at conventional sonography. AJR Am J Roentgenol 2012; 198 (06) 1438-1444
  • 24 Li K, Su ZZ, Xu EJ, Ju JX, Meng XC, Zheng RQ. Improvement of ablative margins by the intraoperative use of CEUS-CT/MR image fusion in hepatocellular carcinoma. BMC Cancer 2016; 16 (01) 277
  • 25 Lee MW. Fusion imaging of real-time ultrasonography with CT or MRI for hepatic intervention. Ultrasonography 2014; 33 (04) 227-239
  • 26 Bo XW, Xu HX, Wang D. , et al. Fusion imaging of contrast-enhanced ultrasound and contrast-enhanced CT or MRI before radiofrequency ablation for liver cancers. Br J Radiol 2016; 89 (1067): 20160379
  • 27 Lee MW, Kim YJ, Park HS. , et al. Targeted sonography for small hepatocellular carcinoma discovered by CT or MRI: factors affecting sonographic detection. AJR Am J Roentgenol 2010; 194 (05) W396-400
  • 28 Kim AY, Lee MW, Rhim H. , et al. Pretreatment evaluation with contrast-enhanced ultrasonography for percutaneous radiofrequency ablation of hepatocellular carcinomas with poor conspicuity on conventional ultrasonography. Korean J Radiol 2013; 14 (05) 754-763
  • 29 Dong Y, Wang WP, Mao F, Ji ZB, Huang BJ. Application of imaging fusion combining contrast-enhanced ultrasound and magnetic resonance imaging in detection of hepatic cellular carcinomas undetectable by conventional ultrasound. J Gastroenterol Hepatol 2016; 31 (04) 822-828
  • 30 Calandri M, Mauri G, Yevich S. , et al. Fusion imaging and virtual navigation to guide percutaneous thermal ablation of hepatocellular carcinoma: a review of the literature. Cardiovasc Intervent Radiol 2019 ;•••: 10.1007/s00270-019-02167-z
  • 31 Makino Y, Imai Y, Ohama H. , et al. Ultrasonography fusion imaging system increases the chance of radiofrequency ablation for hepatocellular carcinoma with poor conspicuity on conventional ultrasonography. Oncology 2013; 84 (Suppl. 01) 44-50
  • 32 Matsui O, Kobayashi S, Sanada J. , et al. Hepatocellular nodules in liver cirrhosis: hemodynamic evaluation (angiography-assisted CT) with special reference to multi-step hepatocarcinogenesis. Abdom Imaging 2011; 36 (03) 264-272
  • 33 Sultana S, Awai K, Nakayama Y. , et al. Hypervascular hepatocellular carcinomas: bolus tracking with a 40-detector CT scanner to time arterial phase imaging. Radiology 2007; 243 (01) 140-147
  • 34 Arif-Tiwari H, Kalb B, Chundru S. , et al. MRI of hepatocellular carcinoma: an update of current practices. Diagn Interv Radiol 2014; 20 (03) 209-221
  • 35 Kunishi Y, Numata K, Morimoto M. , et al. Efficacy of fusion imaging combining sonography and hepatobiliary phase MRI with Gd-EOB-DTPA to detect small hepatocellular carcinoma. AJR Am J Roentgenol 2012; 198 (01) 106-114
  • 36 Lee MW, Rhim H, Cha DI, Kim YJ, Lim HK. Planning US for percutaneous radiofrequency ablation of small hepatocellular carcinomas (1-3 cm): value of fusion imaging with conventional US and CT/MR images. J Vasc Interv Radiol 2013; 24 (07) 958-965
  • 37 Amalou H, Wood BJ. Multimodality fusion with MRI, CT, and ultrasound contrast for ablation of renal cell carcinoma. Case Rep Urol 2012; 2012: 390912
  • 38 Xu EJ, Lv SM, Li K. , et al. Immediate evaluation and guidance of liver cancer thermal ablation by three-dimensional ultrasound/contrast-enhanced ultrasound fusion imaging. Int J Hyperthermia 2018; 34 (06) 870-876
  • 39 Prada F, Bene MD, Fornaro R. , et al. Identification of residual tumor with intraoperative contrast-enhanced ultrasound during glioblastoma resection. Neurosurg Focus 2016; 40 (03) E7
  • 40 Mauri G, Cova L, Tondolo T. , et al. Percutaneous laser ablation of metastatic lymph nodes in the neck from papillary thyroid carcinoma: preliminary results. J Clin Endocrinol Metab 2013; 98 (07) E1203-E1207
  • 41 Minami Y, Kudo M. Imaging modalities for assessment of treatment response to nonsurgical hepatocellular carcinoma therapy: Contrast-enhanced US, CT, and MRI. Liver Cancer 2015; 4 (02) 106-114
  • 42 Du J, Li HL, Zhai B, Chang S, Li FH. Radiofrequency ablation for hepatocellular carcinoma: utility of conventional ultrasound and contrast-enhanced ultrasound in guiding and assessing early therapeutic response and short-term follow-up results. Ultrasound Med Biol 2015; 41 (09) 2400-2411
  • 43 Kim CK, Choi D, Lim HK. , et al. Therapeutic response assessment of percutaneous radiofrequency ablation for hepatocellular carcinoma: utility of contrast-enhanced agent detection imaging. Eur J Radiol 2005; 56 (01) 66-73
  • 44 Claudon M, Dietrich CF, Choi BI. , et al; World Federation for Ultrasound in Medicine; European Federation of Societies for Ultrasound. Guidelines and good clinical practice recommendations for Contrast Enhanced Ultrasound (CEUS) in the liver - update 2012: a WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultrasound Med Biol 2013; 39 (02) 187-210
  • 45 Minami Y, Minami T, Chishina H. , et al. US-US fusion imaging in radiofrequency ablation for liver metastases. Dig Dis 2016; 34 (06) 687-691
  • 46 Hill CR, ter Haar GR. Review article: high intensity focused ultrasound--potential for cancer treatment. Br J Radiol 1995; 68 (816) 1296-1303
  • 47 ter Haar G. Ultrasound focal beam surgery. Ultrasound Med Biol 1995; 21 (09) 1089-1100
  • 48 Uchida T, Ohkusa H, Yamashita H. , et al. Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer. Int J Urol 2006; 13 (03) 228-233
  • 49 Wiering B, Ruers TJM, Krabbe PFM, Dekker HM, Oyen WJG. Comparison of multiphase CT, FDG-PET and intra-operative ultrasound in patients with colorectal liver metastases selected for surgery. Ann Surg Oncol 2007; 14 (02) 818-826
  • 50 Shyn PB. Interventional positron emission tomography/computed tomography: state-of-the-art. Tech Vasc Interv Radiol 2013; 16 (03) 182-190
  • 51 Tatli S, Gerbaudo VH, Mamede M, Tuncali K, Shyn PB, Silverman SG. Abdominal masses sampled at PET/CT-guided percutaneous biopsy: initial experience with registration of prior PET/CT images. Radiology 2010; 256 (01) 305-311
  • 52 Hakime A, Deschamps F, De Carvalho EGM, Teriitehau C, Auperin A, De Baere T. Clinical evaluation of spatial accuracy of a fusion imaging technique combining previously acquired computed tomography and real-time ultrasound for imaging of liver metastases. Cardiovasc Intervent Radiol 2011; 34 (02) 338-344
  • 53 Mauri G, Gennaro N, De Beni S. , et al. Real-time US-18FDG-PET/CT image fusion for guidance of thermal ablation of 18FDG-PET-positive liver metastases: the added value of contrast enhancement. Cardiovasc Intervent Radiol 2019; 42 (01) 60-68
  • 54 Mainini AP, Monaco C, Pescatori LC. , et al. Image-guided thermal ablation of benign thyroid nodules. J Ultrasound 2016; 20 (01) 11-22
  • 55 Mauri G, Cova L, Ierace T. , et al. Treatment of metastatic lymph nodes in the neck from papillary thyroid carcinoma with percutaneous laser ablation. Cardiovasc Intervent Radiol 2016; 39 (07) 1023-1030
  • 56 Sartori S, Mauri G, Tombesi P, Di Vece F, Bianchi L, Pacella CM. Ultrasound-guided percutaneous laser ablation is safe and effective in the treatment of small renal tumors in patients at increased bleeding risk. Int J Hyperthermia 2018; 35 (01) 19-25
  • 57 Livraghi T, Solbiati L, Meloni MF, Gazelle GS, Halpern EF, Goldberg SN. Treatment of focal liver tumors with percutaneous radio-frequency ablation: complications encountered in a multicenter study. Radiology 2003; 226 (02) 441-451
  • 58 Gillams AR, Lees WR. Five-year survival following radiofrequency ablation of small, solitary, hepatic colorectal metastases. J Vasc Interv Radiol 2008; 19 (05) 712-717
  • 59 Gervais DA, McGovern FJ, Arellano RS, McDougal WS, Mueller PR. Renal cell carcinoma: clinical experience and technical success with radio-frequency ablation of 42 tumors. Radiology 2003; 226 (02) 417-424
  • 60 Dupuy DE, DiPetrillo T, Gandhi S. , et al. Radiofrequency ablation followed by conventional radiotherapy for medically inoperable stage I non-small cell lung cancer. Chest 2006; 129 (03) 738-745
  • 61 Callstrom MR, Atwell TD, Charboneau JW. , et al. Painful metastases involving bone: percutaneous image-guided cryoablation--prospective trial interim analysis. Radiology 2006; 241 (02) 572-580
  • 62 Crocetti L, Lencioni R, Debeni S, See TC, Pina CD, Bartolozzi C. Targeting liver lesions for radiofrequency ablation: an experimental feasibility study using a CT-US fusion imaging system. Invest Radiol 2008; 43 (01) 33-39
  • 63 Min JH, Lim HK, Lim S. , et al. Radiofrequency ablation of very-early-stage hepatocellular carcinoma inconspicuous on fusion imaging with B-mode US: value of fusion imaging with contrast-enhanced US. Clin Mol Hepatol 2014; 20 (01) 61-70
  • 64 Monfardini L, Orsi F, Caserta R. , et al. Ultrasound and cone beam CT fusion for liver ablation: technical note. Int J Hyperthermia 2018; 35 (01) 500-504
  • 65 Yang M, Ding H, Zhu L, Wang G. Ultrasound fusion image error correction using subject-specific liver motion model and automatic image registration. Elsevier; 2016. . doi:10.1016/j.compbiomed.2016.10.008
  • 66 Solbiati M, Passera KM, Rotilio A. , et al. Augmented reality for interventional oncology: proof-of-concept study of a novel high-end guidance system platform. Eur Radiol Exp 2018; 2: 18