Semin Thromb Hemost 2019; 45(07): 743-750
DOI: 10.1055/s-0039-1688445
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Gene Therapy: Paving New Roads in the Treatment of Hemophilia

Gabriela G. Yamaguti-Hayakawa
1   Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
2   IHTC Hemophilia Unit Cláudio Luiz Pizzigatti Corrêa, INCT do Sangue Hemocentro UNICAMP, University of Campinas, Campinas, São Paulo, Brazil
,
Margareth C. Ozelo
1   Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
2   IHTC Hemophilia Unit Cláudio Luiz Pizzigatti Corrêa, INCT do Sangue Hemocentro UNICAMP, University of Campinas, Campinas, São Paulo, Brazil
› Author Affiliations
Funding Dr. Yamaguti-Hayakawa reports personal fees and nonfinancial support from Roche outside the submitted work. Dr. Ozelo reports grants from BioMarin, Pfizer, during the conduct of the study and grants from Novo Nordisk, Shire, Bioverativ, and Roche outside the submitted work.
Further Information

Publication History

Publication Date:
16 May 2019 (online)

Abstract

Hemophilia is a monogenic disease with robust clinicolaboratory correlations of severity. These attributes coupled with the availability of experimental animal models have made it an attractive model for gene therapy. The road from animal models to human clinical studies has heralded significant successes, but major issues concerning a previous immunity against adeno-associated virus and transgene optimization remain to be fully resolved. Despite significant advances in gene therapy application, many questions remain pertaining to its use in specific populations such as those with factor inhibitors, those with underlying liver disease, and pediatric patients. Here, the authors provide an update on viral vector and transgene improvements, review the results of recently published gene therapy clinical trials for hemophilia, and discuss the main challenges facing investigators in the field.

 
  • References

  • 1 Szybalski W. The 50th anniversary of gene therapy: beginnings and present realities. Gene 2013; 525 (02) 151-154
  • 2 Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 2018; 20 (05) e3015
  • 3 Blanchette VS, Key NS, Ljung LR, Manco-Johnson MJ, van den Berg HM, Srivastava A. ; Subcommittee on Factor VIII, Factor IX and Rare Coagulation Disorders of the Scientific and Standardization Committee of the International Society on Thrombosis and Hemostasis. Definitions in hemophilia: communication from the SSC of the ISTH. J Thromb Haemost 2014; 12 (11) 1935-1939
  • 4 Nichols TC, Hough C, Agersø H, Ezban M, Lillicrap D. Canine models of inherited bleeding disorders in the development of coagulation assays, novel protein replacement and gene therapies. J Thromb Haemost 2016; 14 (05) 894-905
  • 5 Sabatino DE, Nichols TC, Merricks E, Bellinger DA, Herzog RW, Monahan PE. Animal models of hemophilia. Prog Mol Biol Transl Sci 2012; 105: 151-209
  • 6 Herzog RW, Yang EY, Couto LB. , et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med 1999; 5 (01) 56-63
  • 7 Rangarajan S, Walsh L, Lester W. , et al. AAV5-factor VIII gene transfer in severe hemophilia A. N Engl J Med 2017; 377 (26) 2519-2530
  • 8 George LA, Sullivan SK, Giermasz A. , et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med 2017; 377 (23) 2215-2227
  • 9 Naso MF, Tomkowicz B, Perry III WL, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 2017; 31 (04) 317-334
  • 10 Atchison RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles. Science 1965; 149 (3685): 754-756
  • 11 Zinn E, Vandenberghe LH. Adeno-associated virus: fit to serve. Curr Opin Virol 2014; 8: 90-97
  • 12 Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis 2009; 199 (03) 381-390
  • 13 Herzog RW, Hagstrom JN, Kung SH. , et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc Natl Acad Sci U S A 1997; 94 (11) 5804-5809
  • 14 Manno CS, Chew AJ, Hutchison S. , et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003; 101 (08) 2963-2972
  • 15 Jiang H, Pierce GF, Ozelo MC. , et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther 2006; 14 (03) 452-455
  • 16 Manno CS, Pierce GF, Arruda VR. , et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12 (03) 342-347
  • 17 Mount JD, Herzog RW, Tillson DM. , et al. Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy. Blood 2002; 99 (08) 2670-2676
  • 18 Nathwani AC, Tuddenham EG, Rangarajan S. , et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011; 365 (25) 2357-2365
  • 19 Nathwani AC, Reiss UM, Tuddenham EG. , et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 2014; 371 (21) 1994-2004
  • 20 High K, George LA, Eyster ME. , et al. A phase 1/2 trial of investigational SPK-8011 in hemophilia A demonstrates durable expression and prevention of bleeds. Blood 2018; 132: 487
  • 21 Monahan PE, Walsh CE, Powell JS. , et al. Update on the phase 1/2 trial of BAX-335, an adeno-associated virus 8 (AAV8) vector-based gene therapy for program for hemophilia B. J Thromb Haemost 2015; 13 (Suppl. 02) 87
  • 22 Pittman DD, Marquette KA, Kaufman RJ. Role of the B domain for factor VIII and factor V expression and function. Blood 1994; 84 (12) 4214-4225
  • 23 Rangarajan S, Kim B, Lester W. , et al. Achievement of normal factor VIII activity following gene transfer with valoctocogene roxaparvovec (BMN 270): long- term efficacy and safety results in patients with severe hemophilia A. Haemophilia 2018; 24: 66
  • 24 Simioni P, Tormene D, Tognin G. , et al. X-linked thrombophilia with a mutant factor IX (factor IX Padua). N Engl J Med 2009; 361 (17) 1671-1675
  • 25 Mena JA, Aucoin MG, Montes J, Chahal PS, Kamen AA. Improving adeno-associated vector yield in high density insect cell cultures. J Gene Med 2010; 12 (02) 157-167
  • 26 Miesbach W, Meijer K, Coppens M. , et al. Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B. Blood 2018; 131 (09) 1022-1031
  • 27 Pipe S, Stine K, Rajasekhar A. , et al. 101HEMB01, a phase 1/2 open-label single ascending dose-finding trial of DTX101 (AAVrh10FIX) in patients with moderate/severe to severe hemophilia B demonstrated meaningful but transient expression of human factor IX. Blood 2017; 130: 3333
  • 28 Chowdary P, Shapiro S, Davidoff AM. , et al. A single intravenous infusion of FLT180a results in factor IX activity levels of more than 40% and has the potential to provide a functional cure for patients with haemophilia B. Blood 2018; 132: 631
  • 29 Mimuro J, Mizukami H, Hishikawa S. , et al. Minimizing the inhibitory effect of neutralizing antibody for efficient gene expression in the liver with adeno-associated virus 8 vectors. Mol Ther 2013; 21 (02) 318-323
  • 30 Monteilhet V, Saheb S, Boutin S. , et al. A 10 patient case report on the impact of plasmapheresis upon neutralizing factors against adeno-associated virus (AAV) types 1, 2, 6, and 8. Mol Ther 2011; 19 (11) 2084-2091
  • 31 Meliani A, Boisgerault F, Hardet R. , et al. Antigen-selective modulation of AAV immunogenicity with tolerogenic rapamycin nanoparticles enables successful vector re-administration. Nat Commun 2018; 9 (01) 4098
  • 32 Nathwani AC, Davidoff AM, Tuddenham EGD. Advances in gene therapy for hemophilia. Hum Gene Ther 2017; 28 (11) 1004-1012
  • 33 Kitchen S, Kershaw G, Tiefenbacher S. Recombinant to modified factor VIII and factor IX - chromogenic and one-stage assays issues. Haemophilia 2016; 22 (Suppl. 05) 72-77
  • 34 Iorio A, Skinner MW, Clearfield E. , et al; coreHEM panel. Core outcome set for gene therapy in haemophilia: results of the coreHEM multistakeholder project. Haemophilia 2018; 24 (04) e167-e172
  • 35 DiMichele DM, Hoots WK, Pipe SW, Rivard GE, Santagostino E. International workshop on immune tolerance induction: consensus recommendations. Haemophilia 2007; 13 (Suppl. 01) 1-22
  • 36 Coppola A, Di Minno MN, Santagostino E. Optimizing management of immune tolerance induction in patients with severe haemophilia A and inhibitors: towards evidence-based approaches. Br J Haematol 2010; 150 (05) 515-528
  • 37 Hay CR, DiMichele DM. ; International Immune Tolerance Study. The principal results of the International Immune Tolerance Study: a randomized dose comparison. Blood 2012; 119 (06) 1335-1344
  • 38 Finn JD, Ozelo MC, Sabatino DE. , et al. Eradication of neutralizing antibodies to factor VIII in canine hemophilia A after liver gene therapy. Blood 2010; 116 (26) 5842-5848
  • 39 Niemeyer GP, Herzog RW, Mount J. , et al. Long-term correction of inhibitor-prone hemophilia B dogs treated with liver-directed AAV2-mediated factor IX gene therapy. Blood 2009; 113 (04) 797-806
  • 40 Crudele JM, Finn JD, Siner JI. , et al. AAV liver expression of FIX-Padua prevents and eradicates FIX inhibitor without increasing thrombogenicity in hemophilia B dogs and mice. Blood 2015; 125 (10) 1553-1561
  • 41 French RA, Samelson-Jones BJ, Niemeyer GP. , et al. Complete correction of hemophilia B phenotype by FIX-Padua skeletal muscle gene therapy in an inhibitor-prone dog model. Blood Adv 2018; 2 (05) 505-508
  • 42 Toyoda H, Hayashi K, Murakami Y. , et al. Prevalence and clinical implications of occult hepatitis B viral infection in hemophilia patients in Japan. J Med Virol 2004; 73 (02) 195-199
  • 43 Goedert JJ, Chen BE, Preiss L, Aledort LM, Rosenberg PS. Reconstruction of the hepatitis C virus epidemic in the US hemophilia population, 1940-1990. Am J Epidemiol 2007; 165 (12) 1443-1453
  • 44 Jang TY, Lin PC, Huang CI. , et al. Seroprevalence and clinical characteristics of viral hepatitis in transfusion-dependent thalassemia and hemophilia patients. PLoS One 2017; 12 (06) e0178883
  • 45 Kucharska M, Inglot M, Szymczak A. , et al. Co-infection of the hepatitis C virus with other blood-borne and hepatotropic viruses among hemophilia patients in Poland. Hepat Mon 2016; 16 (09) e35658
  • 46 Lundstrom K. Viral vectors in gene therapy. Diseases 2018; 6 (02) 42
  • 47 Cornu TI, Mussolino C, Cathomen T. Refining strategies to translate genome editing to the clinic. Nat Med 2017; 23 (04) 415-423