Semin Thromb Hemost 2020; 46(05): 587-591
DOI: 10.1055/s-0039-1688490
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Shear-, Sound-, and Light-Sensitive Nanoparticles for Thrombolytic Drug Delivery

Shu Qu
1   Institute of Translational Medicine, Nanchang University, Nanchang, China
,
Xingwei Ding
1   Institute of Translational Medicine, Nanchang University, Nanchang, China
› Author Affiliations
Further Information

Publication History

Publication Date:
16 May 2019 (online)

Abstract

Thrombotic diseases, as potentially induced by blood clots or vascular embolization, frequently occur with high rates of mortalities worldwide. Current drug thrombolysis, a primary clinical therapy, may increase fatal risk of hemorrhage when thrombolysis agents become systemically distributed. Given current thrombolysis limitations, some novel drug delivery systems based on nanoparticles have been recently exploited to achieve a more controlled release of loaded thrombolytic agents, able to respond to environmental changes, and resulting in a safer thrombolysis. In this review, the authors outline and discuss some prominent examples of early and recent thrombolytic agent delivery systems using controlled release by physical stimuli (shear, sound and light). Shear-sensitive systems are designed to exploit the specific biomechanical feature of thrombosis, that is, the increased blood shear stress. Sound- and light-sensitive systems reflect “remote control” of drug release by responding to external ultrasound or light stimulus. These smart thrombolytic drug delivery systems hold promise for more effective and safer future thrombolytic therapy.

 
  • References

  • 1 Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J 2016; 37 (42) 3232-3245
  • 2 Anderson JL, Morrow DA. Acute myocardial infarction. N Engl J Med 2017; 376 (21) 2053-2064
  • 3 Benjamin EJ, Blaha MJ, Chiuve SE. , et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 2017; 135 (10) e146-e603
  • 4 Ebinger M, Winter B, Wendt M. , et al; STEMO Consortium. Effect of the use of ambulance-based thrombolysis on time to thrombolysis in acute ischemic stroke: a randomized clinical trial. JAMA 2014; 311 (16) 1622-1631
  • 5 Chatterjee S, Chakraborty A, Weinberg I. , et al. Thrombolysis for pulmonary embolism and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: a meta-analysis. JAMA 2014; 311 (23) 2414-2421
  • 6 Coutinho JM, Liebeskind DS, Slater LA. , et al. Combined intravenous thrombolysis and thrombectomy vs thrombectomy alone for acute ischemic stroke: a pooled analysis of the swift and star studies. JAMA Neurol 2017; 74 (03) 268-274
  • 7 Hölper P, Kotelis D, Attigah N, Hyhlik-Dürr A, Böckler D. Longterm results after surgical thrombectomy and simultaneous stenting for symptomatic iliofemoral venous thrombosis. Eur J Vasc Endovasc Surg 2010; 39 (03) 349-355
  • 8 Yeh CH, Huang TS, Wang YC. , et al. Initiation of antiplatelet medication after surgical thrombectomy jeopardized arteriovenous graft longevity. J Vasc Access 2017; 18 (03) 207-213
  • 9 Murthy SB, Gupta A, Merkler AE. , et al. Restarting anticoagulant therapy after intracranial hemorrhage: a systematic review and meta-analysis. Stroke 2017; 48 (06) 1594-1600
  • 10 Tafur A, Douketis J. Perioperative management of anticoagulant and antiplatelet therapy. Heart 2018; 104 (17) 1461-1467
  • 11 Ducroux C, Di Meglio L, Loyau S. , et al. Thrombus neutrophil extracellular traps content impair tPA-induced thrombolysis in acute ischemic stroke. Stroke 2018; 49 (03) 754-757
  • 12 Tan Q, Chen Q, Niu Y. , et al. Urokinase, a promising candidate for fibrinolytic therapy for intracerebral hemorrhage. J Neurosurg 2017; 126 (02) 548-557
  • 13 Li Y, Yang R, Li Z. , et al. Urokinase vs tissue-type plasminogen activator for thrombolytic evacuation of spontaneous intracerebral hemorrhage in basal ganglia. Front Neurol 2017; 8: 371-379
  • 14 Jin HJ, Zhang H, Sun ML, Zhang BG, Zhang JW. Urokinase-coated chitosan nanoparticles for thrombolytic therapy: preparation and pharmacodynamics in vivo. J Thromb Thrombolysis 2013; 36 (04) 458-468
  • 15 Cohen A. Pharmacokinetics of the recombinant thrombolytic agents: what is the clinical significance of their different pharmacokinetic parameters?. BioDrugs 1999; 11 (02) 115-123
  • 16 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (01) 34-45
  • 17 Wang Y, Li Q, Wang J, Zhuang QK, Zhang YY. Combination of thrombolytic therapy and neuroprotective therapy in acute ischemic stroke: is it important?. Eur Rev Med Pharmacol Sci 2015; 19 (03) 416-422
  • 18 Harston GWJ, Sutherland BA, Kennedy J, Buchan AM. The contribution of L-arginine to the neurotoxicity of recombinant tissue plasminogen activator following cerebral ischemia: a review of rtPA neurotoxicity. J Cereb Blood Flow Metab 2010; 30 (11) 1804-1816
  • 19 Liu J, Li M, Luo Z. , et al. Design of nanocarriers based on complex biological barriers in vivo for tumor therapy. Nano Today 2017; 15: 56-90
  • 20 Englert C, Nischang I, Bader C. , et al. Photocontrolled release of chemicals from nano- and microparticle containers. Angew Chem Int Ed Engl 2018; 57 (09) 2479-2482
  • 21 Medina SH, Michie MS, Miller SE, Schnermann MJ, Schneider JP. Fluorous phase-directed peptide assembly affords nano-peptisomes capable of ultrasound-triggered cellular delivery. Angew Chem Int Ed Engl 2017; 56 (38) 11404-11408
  • 22 Papa AL, Korin N, Kanapathipillai M. , et al. Ultrasound-sensitive nanoparticle aggregates for targeted drug delivery. Biomaterials 2017; 139: 187-194
  • 23 Heywood SE, Richart AL, Henstridge DC. , et al. High-density lipoprotein delivered after myocardial infarction increases cardiac glucose uptake and function in mice. Sci Transl Med 2017; 9 (411) eaam6084
  • 24 Ziegler M, Wang X, Lim B. , et al. Platelet-targeted delivery of peripheral blood mononuclear cells to the ischemic heart restores cardiac function after ischemia-reperfusion Injury. Theranostics 2017; 7 (13) 3192-3206
  • 25 Richardson JJ, Choy MY, Guo J. , et al. Polymer capsules for plaque-targeted in vivo delivery. Adv Mater 2016; 28 (35) 7703-7707
  • 26 Pitek AS, Wang Y, Gulati S. , et al. Elongated plant virus-based nanoparticles for enhanced delivery of thrombolytic therapies. Mol Pharm 2017; 14 (11) 3815-3823
  • 27 Zamanlu M, Farhoudi M, Eskandani M. , et al. Recent advances in targeted delivery of tissue plasminogen activator for enhanced thrombolysis in ischaemic stroke. J Drug Target 2018; 26 (02) 95-109
  • 28 Holme MN, Fedotenko IA, Abegg D. , et al. Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat Nanotechnol 2012; 7 (08) 536-543
  • 29 Korin N, Kanapathipillai M, Matthews BD. , et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 2012; 337 (6095): 738-742
  • 30 Molloy CP, Yao Y, Kammoun H. , et al. Shear-sensitive nanocapsule drug release for site-specific inhibition of occlusive thrombus formation. J Thromb Haemost 2017; 15 (05) 972-982
  • 31 Tiukinhoy-Laing SD, Huang S, Klegerman M, Holland CK, McPherson DD. Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes. Thromb Res 2007; 119 (06) 777-784
  • 32 Smith DA, Vaidya SS, Kopechek JA. , et al. Ultrasound-triggered release of recombinant tissue-type plasminogen activator from echogenic liposomes. Ultrasound Med Biol 2010; 36 (01) 145-157
  • 33 Jin H, Tan H, Zhao L. , et al. Ultrasound-triggered thrombolysis using urokinase-loaded nanogels. Int J Pharm 2012; 434 (1-2): 384-390
  • 34 Uesugi Y, Kawata H, Jo J, Saito Y, Tabata Y. An ultrasound-responsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy. J Control Release 2010; 147 (02) 269-277
  • 35 Kawata H, Uesugi Y, Soeda T. , et al. A new drug delivery system for intravenous coronary thrombolysis with thrombus targeting and stealth activity recoverable by ultrasound. J Am Coll Cardiol 2012; 60 (24) 2550-2557
  • 36 Hirano T, Komatsu M, Uenohara H, Takahashi A, Takayama K, Yoshimoto T. A novel method of drug delivery for fibrinolysis with Ho:YAG laser-induced liquid jet. Lasers Med Sci 2002; 17 (03) 165-172
  • 37 Walker JM, Zaleski JM. Non-enzymatic remodeling of fibrin biopolymers via photothermally triggered radical-generating nanoparticles. Chem Mater 2014; 26 (17) 5120-5130
  • 38 Wang X, Wei C, Liu M. , et al. Near-infrared triggered release of uPA from nanospheres for localized hyperthermia-enhanced thrombolysis. Adv Funct Mater 2017; 27 (40) 1701824
  • 39 Bark Jr DL, Ku DN. Wall shear over high degree stenoses pertinent to atherothrombosis. J Biomech 2010; 43 (15) 2970-2977
  • 40 Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985; 5 (03) 293-302
  • 41 Wootton DM, Ku DN. Fluid mechanics of vascular systems, diseases, and thrombosis. Annu Rev Biomed Eng 1999; 1 (01) 299-329
  • 42 Ku DN. Blood flow in arteries. Annu Rev Fluid Mech 1997; 29 (01) 399-434
  • 43 Charoenphol P, Onyskiw PJ, Carrasco-Teja M, Eniola-Adefeso O. Particle-cell dynamics in human blood flow: implications for vascular-targeted drug delivery. J Biomech 2012; 45 (16) 2822-2828
  • 44 Marosfoi MG, Korin N, Gounis MJ. , et al. Shear-activated nanoparticle aggregates combined with temporary endovascular bypass to treat large vessel occlusion. Stroke 2015; 46 (12) 3507-3513
  • 45 Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature 2013; 499 (7459): 419-425
  • 46 Epshtein M, Korin N. Shear targeted drug delivery to stenotic blood vessels. J Biomech 2017; 50: 217-221
  • 47 Unger E, Porter T, Lindner J, Grayburn P. Cardiovascular drug delivery with ultrasound and microbubbles. Adv Drug Deliv Rev 2014; 72: 110-126
  • 48 Pokorny MR, de Rooij M, Duncan E. , et al. Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur Urol 2014; 66 (01) 22-29
  • 49 Chen J, Ratnayaka S, Alford A. , et al. Theranostic multilayer capsules for ultrasound imaging and guided drug delivery. ACS Nano 2017; 11 (03) 3135-3146
  • 50 Guo J, Wang X, Henstridge DC. , et al. Nanoporous metal–phenolic particles as ultrasound imaging probes for hydrogen peroxide. Adv Healthc Mater 2015; 4 (14) 2170-2175
  • 51 Gao S, Zhu Q, Dong X, Chen Z, Liu Z, Xie F. Guided longer pulses from a diagnostic ultrasound and intraclot microbubble enhanced catheter-directed thrombolysis in vivo. J Thromb Thrombolysis 2017; 44 (01) 48-56
  • 52 Coussios CC, Roy RA. Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annu Rev Fluid Mech 2008; 40 (01) 395-420
  • 53 Halliwell M. A tutorial on ultrasonic physics and imaging techniques. Proc Inst Mech Eng H 2010; 224 (02) 127-142
  • 54 Doinikov AA, Bouakaz A. Acoustic microstreaming around an encapsulated particle. J Acoust Soc Am 2010; 127 (03) 1218-1227
  • 55 Diederich CJ, Hynynen K. Ultrasound technology for hyperthermia. Ultrasound Med Biol 1999; 25 (06) 871-887
  • 56 Bonn D. Laser thrombolysis: safe and rapid removal of clots?. Lancet 2000; 355 (9219): 1976
  • 57 Topaz O, Minisi AJ, Bernardo NL. , et al. Alterations of platelet aggregation kinetics with ultraviolet laser emission: the “stunned platelet” phenomenon. Thromb Haemost 2001; 86 (04) 1087-1093
  • 58 Topaz O. Holmium laser—induced coronary thrombolysis. J Thromb Thrombolysis 1996; 3 (04) 327-330
  • 59 Shangguan HQ, Gregory KW, Casperson LW, Prahl SA. Enhanced laser thrombolysis with photomechanical drug delivery: an in vitro study. Lasers Surg Med 1998; 23 (03) 151-160