CC BY-NC-ND 4.0 · Revista Urología Colombiana / Colombian Urology Journal 2019; 28(03): 226-233
DOI: 10.1055/s-0039-1688964
Original Article | Artículo Original
Sociedad Colombiana de Urología. Publicado por Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

Frequency of Variants in DNA-Repair Genes in a Southwest Colombian Population

Frecuencia de las variantes en genes de reparación del ADN en una población del suroccidente de Colombia
Herney Andrés García-Perdomo
1   Department of Surgery and Urology, Universidad del Valle, Cali, Colombia
2   UROGIV Research Group, School of Medicine, Universidad del Valle, Cali, Colombia
,
Mailyn Alejandra Bedoya Saldarriaga
3   LABIOMOL Research Group, School of Basic Sciences, Department of Physiological Sciences, Universidad del Valle, Cali, Colombia
,
Adalberto Sánchez
1   Department of Surgery and Urology, Universidad del Valle, Cali, Colombia
3   LABIOMOL Research Group, School of Basic Sciences, Department of Physiological Sciences, Universidad del Valle, Cali, Colombia
› Author Affiliations
Further Information

Publication History

27 December 2018

02 April 2019

Publication Date:
23 May 2019 (online)

Abstract

Objective To describe the frequency of mutations in DNA-repair genes in a southwestern Colombian population.

Methods We have designed an observational study, including 162 people from all ages from southwest Colombia. We have extracted and collected their DNA in filters. We have immersed the DNA in a phosphate buffer along with DNeasy package (Thermo Fisher Scientific, Waltham, MA, USA). The preparation process was with the TruSeq Exome Library Prep (Illumina, Inc. San Diego, CA, USA), then the obtained libraries were normalized with TruSeq Rapid Exome (Illumina, Inc. San Diego, CA, USA). We sequenced the full exome and identified the variants associated with 12 genes (ataxia telangiectasia mutated [ATM], BRCA1 DNA repair associated [BRCA1], BRCA2 DNA repair associated [BRCA2], checkpoint kinase 2 [CHEK2], epithelial cell adhesion molecule [EPCAM], homeobox protein Hox-B13 [HOXB13], mutS homolog 1, 2 and 6 [MLH1, MSH2, MSH6], nibrin [NBN], PMS1 homolog 2, mismatch repair system component [PMS2], and tumor protein p53 [TP53]). Descriptive statistics were performed with the R software (The R Foundation for Statistical Computing, Vienna, Austria).

Results A total of 7,315,466 pieces of data were sequenced in this population. The most frequently mutated genes were ATM (1,221 pieces of data; 13.2%), BRCA1 (1,178 pieces of data; 12.8%), BRCA2 (1,484 pieces of data; 16.12%), and NBN (965 pieces of data; 10.42%). The most common single nucleotide polymorphisms (SNPs) in these 12 genes were the following: BRCA2 (rs169547, rs206075, rs206076); ATM (rs659243, rs228589); TP53 (rs1625895, rs1042522, rs1642785); PMS2 (rs2228006, rs1805319); NBN (rs709816); and MSH6 (rs3136367)

Conclusion The BRCA2, ATM, BRCA1 and NBN DNA-repair genes were the most frequently mutated in this southwestern Colombian Population.

Resumen

Objetivo Describir la frecuencia de las mutaciones en los genes de reparación del ADN en una población del suroccidente de Colombia.

Métodos Diseñamos un estudio observacional que incluyó a 162 personas del suroccidente de Colombia de todas las edades. Hemos extraído y recogido el ADN en filtros. Los sumergimos en tampón fosfato junto con el paquete DNeasy (Thermo Fisher Scientific, Waltham, MA, EEUU). El proceso de preparación fue realizado con TruSeq Exome Library Prep (Illumina, Inc. San Diego, CA, EEUU); luego, las bibliotecas obtenidas se normalizaron con TruSeq Rapid Exome (Illumina, Inc. San Diego, CA, USA). Secuenciamos el exoma completo e identificamos las variantes asociadas a doce genes (ataxia telangiectasia mutated [ATM], BRCA1 DNA repair associated [BRCA1], BRCA2 DNA repair associated [BRCA2], checkpoint kinase 2 [CHEK2], epithelial cell adhesion molecule [EPCAM], homeobox protein Hox-B13 [HOXB13], mutS homolog 1, 2 and 6 [MLH1, MSH2, MSH6], nibrin [NBN], PMS1 homolog 2, mismatch repair system component [PMS2], y tumor protein p53 [TP53]). La estadística descriptiva se realizó en el programa R (The R Foundation for Statistical Computing, Viena, Austria).

Resultados Un total de 7.315.466 datos fueron secuenciados en esta población. Los genes más frecuentemente mutados fueron el ATM, con 1.221 datos (13,2%), el BRCA1, con 1.178 datos (12,8%), el BRCA2, con 1.484 datos (16,12%) y el NBN, con 965 datos (10,42%). Los polimorfismos de un solo nucleótido (PSN) más comunes en estos 12 genes fueron los siguientes: BRCA2 (rs169547, rs206075, rs206076); ATM (rs659243, rs228589); TP53 (rs1625895, rs1042522, rs1642785); PMS2 (rs2228006, rs1805319); NBN (rs709816) y MSH6 (rs3136367)

Conclusión Los genes de reparación de ADN BRCA2, ATM, BRCA1 NBN fueron los más frecuentemente mutados en esta población del suroccidente de Colombia.

Declaration Section

The authors declare that the present study did not receive any funding.


 
  • References

  • 1 Wu X, Gu J. Heritability of prostate cancer: a tale of rare variants and common single nucleotide polymorphisms. Ann Transl Med 2016; 4 (10) 206
  • 2 Packer JR, Maitland NJ. The molecular and cellular origin of human prostate cancer. Biochim Biophys Acta 2016; 1863 (6 Pt A): 1238-1260
  • 3 Rand KA, Rohland N, Tandon A. , et al; African Ancestry Prostate Cancer GWAS Consortium; ELLIPSE/GAME-ON Consortium. Whole-exome sequencing of over 4100 men of African ancestry and prostate cancer risk. Hum Mol Genet 2016; 25 (02) 371-381
  • 4 Nakagawa H. Prostate cancer genomics by high-throughput technologies: genome-wide association study and sequencing analysis. Endocr Relat Cancer 2013; 20 (04) R171-R181
  • 5 Castro E, Eeles R. The role of BRCA1 and BRCA2 in prostate cancer. Asian J Androl 2012; 14 (03) 409-414
  • 6 Alvarez-Cubero MJ, Saiz M, Martinez-Gonzalez LJ, Alvarez JC, Lorente JA, Cozar JM. Genetic analysis of the principal genes related to prostate cancer: a review. Urol Oncol 2013; 31 (08) 1419-1429
  • 7 Valencia O, Lopes G, Sánchez P. , et al. Incidence and Prevalence of Cancer in Colombia: The Methodology Used Matters. J. Glob. Oncol. 2017 ;JGO.17.00008.
  • 8 Antczak A, Wokołorczyk D, Kluźniak W. , et al; Polish Hereditary Prostate Cancer Consortium. The variant allele of the rs188140481 polymorphism confers a moderate increase in the risk of prostate cancer in Polish men. Eur J Cancer Prev 2015; 24 (02) 122-127
  • 9 Smith RA, Andrews KS, Brooks D. , et al. Cancer screening in the United States, 2017: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin 2017; 67 (02) 100-121
  • 10 Choudhury AD, Eeles R, Freedland SJ. , et al. The role of genetic markers in the management of prostate cancer. Eur Urol 2012; 62 (04) 577-587
  • 11 Pritchard CC, Mateo J, Walsh MF. , et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med 2016; 375 (05) 443-453
  • 12 Seppälä EH, Ikonen T, Mononen N. , et al. CHEK2 variants associate with hereditary prostate cancer. Br J Cancer 2003; 89 (10) 1966-1970
  • 13 Smits M, Mehra N, Sedelaar M, Gerritsen W, Schalken JA. Molecular biomarkers to guide precision medicine in localized prostate cancer. Expert Rev Mol Diagn 2017; 17 (08) 791-804
  • 14 Shui IM, Lindström S, Kibel AS. , et al. Prostate cancer (PCa) risk variants and risk of fatal PCa in the national cancer institute breast and prostate cancer cohort consortium. Eur Urol 2014; 65 (06) 1069-1075
  • 15 GENEDx. Hereditary Prostate Cancer [Internet]. 2017 [cited May 1, 2017]. Available at: https://www.genedx.com/test-catalog/available-tests/hereditary-prostate-cancer-panel/
  • 16 R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2017
  • 17 Exome Aggregation Consortium (ExAC). ExAC Browser [Internet]. [cited Nov 11, 2017]. Available at: http://exac.broadinstitute.org/
  • 18 Pharm GKB. PharmGKB [Internet]. [cited Nov 11, 2017]. Available at: https://www.pharmgkb.org/
  • 19 NCBI. ClinVar [Internet]. [cited Nov 11, 2017]. Available at: https://www.ncbi.nlm.nih.gov/clinvar/
  • 20 Ensembl. Emsembl [Internet]. [cited Nov 11, 2017]. Available at: https://www.ensembl.org/info/website/tutorials/gene_snps.html
  • 21 Hsu FC, Sun J, Zhu Y. , et al. Comparison of two methods for estimating absolute risk of prostate cancer based on single nucleotide polymorphisms and family history. Cancer Epidemiol Biomarkers Prev 2010; 19 (04) 1083-1088
  • 22 Restrepo JA, Bravo LE, García-Perdomo HA, García LS, Collazos P, Carbonell J. Incidencia, mortalidad y supervivencia al cáncer de próstata en Cali, Colombia, 1962-2011. Salud Publica Mex 2014; 56 (05) 440-447
  • 23 Parkin D, Ferlay J, Curado M. , et al. Cancer Incidence in Five Continents Volume IX InternatIonal agency for research on cancer InternatIonal assocIatIon of cancer regIstrIes Fifty years of cancer incidence: CI5 I–IX. Int J Cancer 2010; •••: 127
  • 24 Pilié PG, Johnson AM, Hanson KL. , et al. Germline genetic variants in men with prostate cancer and one or more additional cancers. Cancer 2017; 123 (20) 3925-3932
  • 25 Bratt O, Loman N. Clinical Management of Prostate Cancer in Men with BRCA Mutations. Eur Urol 2015; 68 (02) 194-195
  • 26 Rebbeck TR. Prostate Cancer Genetics: Variation by Race, Ethnicity, and Geography. Semin Radiat Oncol 2017; 27 (01) 3-10
  • 27 Foulkes WD, Sugano K. BRCA2: a grown-up cancer susceptibility gene. Endocr Relat Cancer 2016; 23 (10) E1-E3
  • 28 Li Q, Guan R, Qiao Y. , et al. Association between the BRCA2 rs144848 polymorphism and cancer susceptibility: a meta-analysis. Oncotarget 2017; 8 (24) 39818-39832
  • 29 Na R, Zheng SL, Han M. , et al. Germline Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent Prostate Cancer and are Associated with Early Age at Death. Eur Urol 2017; 71 (05) 740-747
  • 30 Cherbal F, Salhi N, Bakour R, Adane S, Boualga K, Maillet P. BRCA1 and BRCA2 unclassified variants and missense polymorphisms in Algerian breast/ovarian cancer families. Dis Markers 2012; 32 (06) 343-353
  • 31 Miao HK, Chen LP, Cai DP, Kong WJ, Xiao L, Lin J. MSH3 rs26279 polymorphism increases cancer risk: a meta-analysis. Int J Clin Exp Pathol 2015; 8 (09) 11060-11067
  • 32 Chen P, Zhang W, Wang X. , et al. Lycopene and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Medicine (Baltimore) 2015; 94 (33) e1260
  • 33 D'Argenio V, Esposito MV, Telese A. , et al. The molecular analysis of BRCA1 and BRCA2: Next-generation sequencing supersedes conventional approaches. Clin Chim Acta 2015; 446: 221-225
  • 34 De Silva S, Tennekoon KH, Dissanayake A, De Silva K, Jayasekara L. Novel and reported pathogenic variants in exon 11 of BRCA2 gene in a cohort of Sri Lankan young breast cancer patients. Fam Cancer 2017; 16 (03) 329-338
  • 35 Arias-blanco JF, Ospino-durán EA, Restrepo-fernández CM. , et al. Frequency of sequence mutations and variants for the BRCA1 and BRCA2 genes in a sample of Colombian. Rev Colomb Obstet Ginecol 2015; 66: 287-296
  • 36 Ruiz de Garibay G. Síndromes Hereditarios De Cáncer De Mama Familiar: Variantes De Significado Clínico Incierto Y Consejo Genético. Universidad Complutense de Madrid; 2014
  • 37 Cui M, Gao XS, Gu X. , et al. BRCA2 mutations should be screened early and routinely as markers of poor prognosis: evidence from 8,988 patients with prostate cancer. Oncotarget 2017; 8 (25) 40222-40232
  • 38 Yang H, Spitz MR, Stewart DJ, Lu C, Gorlov IP, Wu X. ATM sequence variants associate with susceptibility to non-small cell lung cancer. Int J Cancer 2007; 121 (10) 2254-2259
  • 39 Li D, Kumaraswamy E, Harlan-Williams LM, Jensen RA. The role of BRCA1 and BRCA2 in prostate cancer. Front Biosci 2013; 18: 1445-1459
  • 40 Choi M, Kipps T, Kurzrock R. ATM Mutations in Cancer: Therapeutic Implications. Mol Cancer Ther 2016; 15 (08) 1781-1791
  • 41 Cavanagh H, Rogers KMA. The role of BRCA1 and BRCA2 mutations in prostate, pancreatic and stomach cancers. Hered Cancer Clin Pract 2015; 13 (01) 16
  • 42 Buleje J, Guevara-Fujita M, Acosta O. , et al. Mutational analysis of BRCA1 and BRCA2 genes in Peruvian families with hereditary breast and ovarian cancer. Mol Genet Genomic Med 2017; 5 (05) 481-494
  • 43 Nicoloso MS, Sun H, Spizzo R. , et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res 2010; 70 (07) 2789-2798
  • 44 Huo X, Lu C, Huang X. , et al. Polymorphisms in BRCA1, BRCA1-interacting genes and susceptibility of breast cancer in Chinese women. J Cancer Res Clin Oncol 2009; 135 (11) 1569-1575
  • 45 Wang Q, Lu Q, Zhao H. A review of study designs and statistical methods for genomic epidemiology studies using next generation sequencing. Front Genet 2015; 6: 149
  • 46 Berardinelli F, di Masi A, Antoccia A. NBN Gene Polymorphisms and Cancer Susceptibility: A Systemic Review. Curr Genomics 2013; 14 (07) 425-440
  • 47 Mehdinejad M, Sobhan MR, Mazaheri M. , et al. Genetic Association between ERCC2, NBN, RAD51 Gene Variants and Osteosarcoma Risk: a Systematic Review and. 2017 ;18:1315–1321
  • 48 Park SL, Bastani D, Goldstein BY. , et al. Associations between NBS1 polymorphisms, haplotypes and smoking-related cancers. Carcinogenesis 2010; 31 (07) 1264-1271
  • 49 Vineis P, Manuguerra M, Kavvoura FK. , et al. A field synopsis on low-penetrance variants in DNA repair genes and cancer susceptibility. J Natl Cancer Inst 2009; 101 (01) 24-36
  • 50 Lu M, Lu J, Yang X. , et al. Association between the NBS1 E185Q polymorphism and cancer risk: a meta-analysis. BMC Cancer 2009; 9: 124
  • 51 Xu J-L, Hu L-M, Huang M-D. , et al. Genetic variants of NBS1 predict clinical outcome of platinum-based chemotherapy in advanced non-small cell lung cancer in Chinese. Asian Pac J Cancer Prev 2012; 13 (03) 851-856
  • 52 Medina PP, Ahrendt SA, Pollan M, Fernandez P, Sidransky D, Sanchez-Cespedes M. Screening of homologous recombination gene polymorphisms in lung cancer patients reveals an association of the NBS1-185Gln variant and p53 gene mutations. Cancer Epidemiol Biomarkers Prev 2003; 12 (08) 699-704
  • 53 Stern MC, Lin J, Figueroa JD. , et al; International Consortium of Bladder Cancer. Polymorphisms in DNA repair genes, smoking, and bladder cancer risk: findings from the international consortium of bladder cancer. Cancer Res 2009; 69 (17) 6857-6864
  • 54 Zheng J, Zhang C, Jiang L. , et al. Functional NBS1 polymorphism is associated with occurrence and advanced disease status of nasopharyngeal carcinoma. Mol Carcinog 2011; 50 (09) 689-696
  • 55 Jin G, Wang M, Chen W, Shi W, Yin J, Gang W. Single nucleotide polymorphisms of nucleotide excision repair and homologous recombination repair pathways and their role in the risk of osteosarcoma. Pak J Med Sci 2015; 31 (02) 269-273