Subscribe to RSS
DOI: 10.1055/s-0039-1689972
Copper(II)-Promoted Oxidation/[3+2]Cycloaddition/Aromatization Cascade: Efficient Synthesis of Tetrasubstituted NH-Pyrrole from Chalcones and Iminodiacetates
We gratefully acknowledge the financial supported by the Natural Science Foundation of China (21606201), the National Natural Science Foundation of Zhejiang (LY13B020016) and Technological Innovation Program in Zhejiang Province (Zhejiang Xinmiao Talents Program) (2017R403066).Publication History
Received: 11 April 2019
Accepted after revision: 16 May 2019
Publication Date:
12 June 2019 (online)
Abstract
A simple and highly efficient method for the preparation of tetrasubstituted NH-pyrrole from a wide range of chalcones and diethyl iminodiacetates via a Cu(OAc)2-promoted oxidation/[3+2]cycloaddition/aromatization cascade reaction has been developed. This reaction proceeds through dehydrogenations, deamination, and oxidative cyclization, affording the corresponding products in good to excellent yields. This convenient methodology for constructing tetrasubstituted NH-pyrroles has several advantages over existing methods, such as the use of easily accessible chalcones and readily available diethyl iminodiacetates, and mild reaction conditions. A wide range of substrates are tolerated.
Key words
Cu(II)-promoted - tetrasubstituted NH-pyrrole - iminodiacetate - oxidation/[3+2] cycloaddition/aromatization - cascade reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1689972.
- Supporting Information
-
References and Notes
- 1a Jansen R, Sood S, Mohr KI, Kunze B, Irschik H, Stadler M, Müller R. J. Nat. Prod. 2014; 77: 2545
- 1b Liu R, Liu Y, Zhou YD, Nagle DG. J. Nat. Prod. 2007; 70: 1741
- 1c Grube A, Kock M. Org. Lett. 2006; 8: 4675
- 1d Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA. W, Livingstone SJ, Thomason MJ, Mackness MI, Charlton-Menys V, Fuller JH. Lancet 2004; 364: 685
- 1e Lindel T, Breckle G, Hochgurtel M, Volk C, Grube A, Kock M. Tetrahedron Lett. 2004; 45: 8149
- 1f Fujita M, Nakao Y, Matsunaga S, Seiki M, Itoh Y, Van Yamashita J, Soest RW. M, Fusetani N. J. Am. Chem. Soc. 2003; 125: 15700
- 1g Furstner A. Angew. Chem. Int. Ed. 2003; 42: 3582
- 2 Fan H, Peng J, Hamann MT, Hu JF. Chem. Rev. 2008; 108: 264
- 3 Young IS, Thornton PD, Thompson A. Nat. Prod. Rep. 2010; 27: 1801
- 4a Frode R, Hinze C, Josten I, Schmidt B, Steffan B, Steglich W. Tetrahedron Lett. 1994; 35: 1689
- 4b Hashimoto T, Yasuda A, Akazawa K, Takaoka S, Tori M, Akazawa Y. Tetrahedron Lett. 1994; 35: 2559
- 5a Pongprom N, Bachitsch H, Bauchinger A, Ettefagh H, Haider T, Hofer M, Knafl H, Slanz R, Waismeyer M, Wieser F, Spreitzer H. Monatsh. Chem. 2010; 141: 53
- 5b Deblander J, Van Aeken S, Jacobs J, De Kimpe N, Tehrani KA. Eur. J. Org. Chem. 2009; 4882
- 5c Claessens S, Jacobs J, Van Aeken S, Tehrani KA, De Kimpe N. J. Org. Chem. 2008; 73: 7555
- 5d Matiychuk VS, Martyack RL, Obushak ND, Ostapiuk YV, Pidlypnyi NI. Chem. Heterocycl. Compd. 2004; 40: 1218
- 5e Frincke JM, Faulkner DJ. J. Am. Chem. Soc. 1982; 104: 265
- 5f Padwa A, Chen YY, Dent W, Nimmesgern H. J. Org. Chem. 1985; 50: 4006
- 5g Parker KA, Cohen ID, Padwa A, Dent W. Tetrahedron Lett. 1984; 25: 4917
- 5h Boven E, Erkelens CA. M. E, Luning M, Pinedo HM. Br. J. Cancer 1990; 61: 709
- 6a Estevez V, Villacampa M, Menendez JC. Chem. Commun. 2013; 49: 591
- 6b Kaupp G, Schmeyers J, Kuse A, Atfeh A. Angew. Chem. Int. Ed. 1999; 38: 2896
- 7a Madabhushi S, Vangipuram VS, ReddyMallu KK, Chinthala N, Beeram CR. Adv. Synth. Catal. 2012; 354: 1413
- 7b Schmidt EY, Mikhaleva AI, Vasil’tsov AM, Zaitsev AB, Zorina NV. ARKIVOC 2005; (vii): 11
- 7c Zaitsev AB, Schmidt EY, Mikhaleva AM, Afonin AV, Ushakov IA. Chem. Heterocycl. Compd. 2005; 41: 722
- 7d Vasil’tsov AM, Zaitsev AB, Schmidt EY, Mikhaleva AI, Afonin AV. Mendeleev Commun. 2001; 11: 74
- 7e Petrova OV, Mikhaleva AI, Sobenina LN, Schmidt EY, Kositsyna EI. Mendeleev Commun. 1997; 7: 162
- 8a Zelina EY, Nevolina TA, Sorotskaja LN, Skvortsov DA, Trushkov IV, Uchuskin MG. J. Org. Chem. 2018; 83: 11747
- 8b Han SZ, Zard SZ. Org. Lett. 2014; 16: 1992
- 8c Li P, Zhao JJ, Xia CG, Li FW. Org. Lett. 2014; 16: 5992
- 8d Ramírez-Rodríguez A, Méndez JM, Jiménez CC, León F, Vazquez A. Synthesis 2012; 44: 3321
- 8e Wang HY, Mueller DS, Sachwani RM, Kapadia R, Londino HN, Anderson LL. J. Org. Chem. 2011; 76: 3203
- 8f Aginagalde M, Bello T, Masdeu C, Vara Y, Arrieta A, Cossío FP. J. Org. Chem. 2010; 75: 7435
- 8g Chen JX, Wu HY, Zheng ZG, Jin C, Zhang XX, Sua WK. Tetrahedron Lett. 2006; 47: 383
- 9a Liu Y, Hu HY, Wang X, Zhi SJ, Kan YH, Wang C. J. Org. Chem. 2017; 82: 4194
- 9b Wu X, Geng X, Zhao PG, Zhang JJ, Wu YD, Wu AX. Chem. Commun. 2017; 53: 3438
- 9c Huang HM, Li YJ, Gao JR. J. Org. Chem. 2014; 79: 1084
- 9d Gothelf KV, Hazell RG, Jørgensen KA. J. Org. Chem. 1996; 61: 346
- 9e Huisgen R. Angew. Chem. 1963; 75: 604
- 10a Kotha S, Todeti S, Das T, Datta A. Tetrahedron Lett. 2018; 59: 1023
- 10b Hosseini-Sarvari M, Najafvand-Derikvandi S, Jarrahpour A, Heiran R. Chem. Hetrocycl. Comp. 2014; 49: 1732
- 10c Aydogan F, Yolacan C. J. Chem. 2013; 976724
- 10d Fang Y, Leysen D, Ottenheijm HC. J. Synth. Commun. 1995; 25: 1857
- 10e Clauson-Kaas N, Tyle Z. Acta Chem. Scand. 1952; 6: 667
- 11a Kirill IM, Galenko EE, Galenko AV, Novikov MS, Ivanov AY, Starova GL, Khlebnikov AF. J. Org. Chem. 2018; 83: 3177
- 11b Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. RSC Adv. 2015; 5: 15233
- 11c Zhu L, Yu Y, Mao Z, Huang XL. Org. Lett. 2015; 17: 30
- 11d Chen GQ, Zhang XN, Wei Y, Tang XY, Shi M. Angew. Chem. Int. Ed. 2014; 53: 8492
- 11e Bauer I, Knolker H. Top. Curr. Chem. 2012; 309: 203
- 11f Chattopadhyay B, Gevorgyan V. Angew. Chem. Int. Ed. 2012; 51: 862
- 12a Cai Q, Li DK, Zhou RR, Shu WM, Wu YD, Wu AX. Org. Lett. 2016; 18: 1342
- 12b Gao P, Wang J, Bai ZJ, Shen LI, Yan YY, Yang DS, Fan MJ, Guan ZH. Org. Lett. 2016; 18: 6074
- 12c Galenko EE, Galenk AV, Khlebnikov AF, Novikov MS. RSC Adv. 2015; 5: 18172
- 12d Huang HM, Huang F, Li YJ, Jia JH, Ye Q, Han L, Gao JR. RSC Adv. 2014; 4: 27250
- 12e Saito A, Konishi O, Hanzawa Y. Org. Lett. 2010; 12: 372
- 12f Egi M, Azechi K, Akai S. Org. Lett. 2009; 11: 5002
- 12g Ackermann L, Sandmann R, Kaspar LT. Org. Lett. 2009; 11: 2031
- 12h Cacchi S, Fabrizi G, Filisti E. Org. Lett. 2008; 10: 2629
- 13a Li TF, Yan H, Li XC, Wang CX, Wan BS. J. Org. Chem. 2016; 81: 12031
- 13b Xiong MJ, Yu SS, Xie X, Li S, Liu YH. Organometallics 2015; 34: 5597
- 13c Boudriga S, Askri M, Rammah M, Monnier-Jobé K. J. Chem. Res. 2003; 208
- 14a Zhou NN, Li ZL, Xie ZX. Org. Chem. Front. 2015; 2: 1521
- 14b Zhou NN, Xie T, Liu L, Xie ZX. J. Org. Chem. 2014; 79: 6061
- 15a Huang HH, Gao JR, Hou LF, Jia JH, Han L, Ye Q, Li YJ. Tetrahedron 2013; 69: 9033
- 15b Li YJ, Huang HH, Ju J, Jia JH, Han L, Ye Q, Yu WB, Gao JR. RSC Adv. 2013; 3: 25840
- 15c Li YJ, Huang HM, Dong HQ, Jia JH, Han L, Ye Q, Gao JR. J. Org. Chem. 2013; 78: 9424
- 16 Huang HM, Gao JR, Ye Q, Yu WB, Sheng WJ, Li YJ. RSC Adv. 2014; 4: 15526
- 17 Galenko VV, Khlebnikov AF, Novikov MS, Avdontceva MS. Tetrahedron 2015; 71: 1940
- 18 All chemicals were purchased from commercial vendors and were used as received without further purification. The 1H and 13C NMR spectra were recorded at 500 and 125 MHz, respectively, in CDCl3 using TMS as internal standard with a Bruker AM 500 spectrometer. Chemical shifts (δ) are reported as parts per million (ppm) and the following abbreviations are used to identify the multiplicities: s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, b=broad and all combinations thereof can be explained by their integral parts. HRMS data were obtained with a Thermo Scientific LTQ Orbitrap XL mass spectrometer and the GC-MS were recorded with an Agilent (GC431-MS210). Thin-layer chromatography was performed on pre-coated glass-backed plates and visualized with UV light at 254 nm. Flash column chromatography was performed on silica gel (see the Supporting Information). Synthesis of 3a; Typical Procedure A mixture of chalcone 1a (0.25 mmol, 0.0520 g), diethyl iminodiacetate 2a (0.5 mmol, 0.0945 g), Et3N (0.25 mmol, 0.0253 g), and Cu(OAc)2 (0.25 mmol, 0.0498 g) was dissolved in DMF (1.0 mL) in a thick-walled tube (10 mL). The mixture was stirred at 100 °C for 8 h under air atmosphere, and the progress of the reaction was monitored by TLC (PE/EtOAc = 2:1 (v/v)). Upon completion, the mixture was cooled to r.t. and poured into saturated aqueous NaCl (10.0 mL) and extracted with EtOAc (3 × 10.0 mL). The acquired organic phases were combined and dried over anhydrous Na2SO4. After removing the volatile solvent, the product 3a was obtained as a white solid in 90% yield by isolation with silica column chromatography (eluting solvent: petroleum ether/EtOAc = 2:1 (v/v)).