Synthesis 2019; 51(18): 3431-3442
DOI: 10.1055/s-0039-1690001
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Transformation of 5-Acetyl-2-aryl-6-hydroxybenzofurans into Furanoflavanone Derivatives

Malose J. Mphahlele
,
Temitope O. Olomola
The authors thank the University of South Africa and the National Research Foundation (NRF) in South Africa (NRF GUN: 118554) for financial support.
Further Information

Publication History

Received: 22 March 2019

Accepted after revision: 13 June 2019

Publication Date:
28 June 2019 (online)


Abstract

Tandem palladium-catalyzed Sonogashira cross-coupling and heteroannulation of 3-bromo-2,4-dihydroxy-5-iodoacetophenone with arylacetylenes followed by the base-mediated Claisen–Schmidt aldol condensation of the intermediate 5-acetyl-2-aryl-7-bromo-6-hydroxybenzofurans with benzaldehyde derivatives afforded the corresponding linear 2-arylbenzofuranchalcone hybrids. The presence of the o-hydroxy-trans-α,β-unsaturated carbonyl moiety in the prepared furanochalcone hybrids facilitated acid-mediated cycloisomerization into the corresponding linear furanoflavanones. The structures of the prepared compounds were confirmed using a combination of spectrometric techniques complemented with single crystal XRD analysis.

Supporting Information

 
  • References

  • 1 On research leave from Obafemi Awolowo University, Ile-Ife, Osun state, Nigeria.
  • 2 Naik R, Harmalkar DS, Xu X, Jang K, Lee K. Eur. J. Med. Chem. 2015; 90: 379
  • 3 Maurya RM, Yadav PP. Nat. Prod. Rep. 2005; 22: 400
  • 4 Thevenin M, Thoret S, Dubois J. Eur. J. Org. Chem. 2018; 5843
  • 5 Carneiro FJ. C, Boralle N, Silva DH. S, Lopes LM. X. Phytochemistry 2000; 55: 823
  • 6 Ramırez I, Carabot A, Meléndez P, Carmona J, Jimenez M, Patel AV, Crabb TA, Blunden G, Cary PD, Croft SL, Costa M. Phytochemistry 2003; 64: 645
  • 7 Machado MB, Lopes LM. X. Phytochemistry 2008; 69: 3095
  • 8 Rao RR, Tiwari AK, Reddy PP, Babu KS, Suresh G, Ali AZ, Madhusudana K, Agawane SB, Badrinarayan P, Sastry N, Rao JM. Med. Chem. Res. 2012; 21: 760
  • 9 Patel JM, Soman SS. J. Heterocycl. Chem. 2008; 45: 1729
  • 10 Saito Y, Kishimoto M, Yoshizawa Y, Kawaii S. Anticancer Res. 2015; 35: 811
  • 11 Alam MS, Lee DU. Chem. Pharm. Bull. 2010; 58: 1643
  • 12 Sharma R, Williams IB, Gatchie L, Sonawane VR, Chaudhuri B, Bharate SB. ACS Omega 2018; 3: 8553
  • 13 Satyavani SR, Kanjilal S, Rao MS, Prasad RB. N. Med. Chem. Res. 2015; 24: 842
  • 14 Abu-Hashem AA, El-Shazly M. Eur. J. Med. Chem. 2015; 90: 633
  • 15 He X, Chen X, Lin S, Mo X, Zhou P, Zhang Z, Lu Y, Yang Y, Gu H, Shang Z, Lou Y, Wu J. ChemistryOpen 2017; 6: 102
  • 16 Lee YR, Morehead AT. Jr. Tetrahedron 1995; 51: 4909
  • 17 Thevenin M, Thoret S, Dubois J. Eur. J Org. Chem. 2018; 5843
  • 18 Vasas A, Patonay T, Konya K, Silva AM. S, Cavaleiro JA. S. Aust. J. Chem. 2011; 64: 647
  • 19 Goel A, Dixit M. Synlett 2004; 1990
  • 20 Mitsui C, Tanaka H, Tsuji H, Nakamura E. Chem. Asian J. 2011; 6: 2296
  • 21 Grealis JP, Müller-Bunz H, Ortin Y, Casey M, McGlinchey MJ. Eur. J. Org. Chem. 2013; 332
  • 22 Csékei M, Novák Z, Timári G, Kotschy A. ARKIVOC 2004; (vii): 285
  • 23 Benelhadj K, Munch M, Massue MM, Ulrich G. Tetrahedron 2016; 72: 2593
  • 24 Thévenin M, Thoret S, Grellier P, Dubois J. Bioorg. Med. Chem. 2013; 21: 4885
  • 25 Heravi MM, Zadsirjan V. Adv. Heterocycl. Chem. 2015; 17: 261
  • 26 Mehta S, Larock RC. J. Org. Chem. 2010; 75: 1652
  • 27 Mphahlele MJ, Maluleka MM, Aro A, McGaw LJ, Choong YS. J. Enzyme Inhib. Med. Chem. 2018; 33: 1516
  • 28 Mphahlele MJ, Maluleka MM, Parbhoo N, Malindisa ST. Int. J. Mol. Sci. 2018; 19: 2552
  • 29 Wang H.-M, Zhang L, Liu J, Yang Z.-l, Zhao H.-Y, Yang Y, Shen D, Fan Z.-C, Yao Q.-W, Zhang Y.-M, Teng Y.-O, Peng Y. Eur. J. Med. Chem. 2015; 92: 439
  • 30 Wang H, Yan Z, Lei Y, Sheng K, Yao Q, Lu K, Yu P. Tetrahedron Lett. 2014; 55: 897
  • 31 Heravi MM, Zadsirjan V, Hamidi H, Amiri PH. T. RSC Adv. 2017; 7: 24470
  • 32 Khansole SV, Mokle SS, Sayyed MA, Vibhute YB. J. Chin. Chem. Soc. 2008; 55: 871
  • 33 Shinde AT, Zangade SB, Chavan SB, Vibhute AY, Nalvar YS, Vibhute YB. Synth. Commun. 2010; 40: 3506
  • 34 Krawieckala M, Kuran B, Kossakowski J, Wolska I, Kierzkowska M, Młynarczyk G. Acta Pol. Pharm. Drug Res. 2012; 69: 1055
  • 35 CCDC 1902950 (8e) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 36 Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
  • 37 Gao X.-M, Shen Y.-Q, Huang X.-Z, Yang L.-Y, Shu L.-D, Hu QF, Li G.-P. J. Braz. Chem. Soc. 2013; 24: 685
  • 38 Nur-e-Alam M, Yousaf M, Parveen I, Hafizur RM, Ghani U, Ahmed S, Hameed A, Threadgill MD, Al-Rehaily AJ. Org. Biomol. Chem. 2019; 17: 1266
  • 39 Jain AC, Khazanchi R, Gupta RC. Synth. Commun. 1978; 8: 251
  • 40 Liu J, Pham PT, Skripnikova EV, Zheng S, Lovings LJ, Wang Y, Goyal N, Bellow SM, Mensah LM, Chatters AJ. Bratton M. R, Wiese TE, Zhao M, Wang G, Foroozesh M. J. Med. Chem. 2015; 58: 6481
  • 41 CCDC 1902660 (9e) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 42 Vibhute AY, Khansole SV, Mokle SS, Vibhute YB. J. Chem. Pharm. Res. 2010; 2: 620