RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2019; 51(19): 3651-3666
DOI: 10.1055/s-0039-1690002
DOI: 10.1055/s-0039-1690002
paper
Synthesis of N-Sulfonyl- and N-Acylpyrroles via a Ring-Closing Metathesis/Dehydrogenation Tandem Reaction
This work was supported by the Natural Science Foundation of Shandong Province (ZR2019MB009), the Fundamental Research Funds for the Central Universities (HIT.NSRIF.201701), the Natural Science Foundation of China (21672046, 21372054), and funding from the Huancui District of Weihai City.Weitere Informationen
Publikationsverlauf
Received: 07. Juni 2019
Accepted after revision: 26. Juni 2019
Publikationsdatum:
15. Juli 2019 (online)
Abstract
N-Sulfonyl- and N-acylpyrroles were synthesized via olefin ring-closing metathesis of diallylamines and in situ oxidative aromatization in the presence of the ruthenium Grubbs catalyst and a suitable copper catalyst. In the presence of Cu(OTf)2 and CuBr2, the reaction afforded N-sulfonyl- and N-acylpyrroles, respectively, in one pot. Under an oxygen atmosphere, the reaction went smoothly without the need of hydroperoxide oxidants. This protocol possesses many advantages, such as using a nonhazardous oxidant and readily available starting materials, operating in one pot, and showing a broad substrate scope.
Key words
N-substituted pyrroles - ring-closing methathesis - Grubbs catalyst - Oxydehydrogenation - tandem reactionsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690002.
- Supporting Information
-
References
- 1a Grubbs RH, Chang S. Tetrahedron 1998; 54: 4413
- 1b Hoveyda AH, Schrock RR. Chem. Eur. J. 2001; 7: 945
- 1c Kurteva VB, Afonso CA. M. Chem. Rev. 2009; 109: 6809
- 2 van Otterlo WA. L, de Koning CB. Chem. Rev. 2009; 109: 3743
- 3a Cooney JV, McEwen WE. J. Org. Chem. 1981; 46: 2570
- 3b Minetto G, Raveglia LF, Taddei M. Org. Lett. 2004; 6: 389
- 3c Clauson-Kaas N, Tyle Z. Acta Chem. Scand. 1952; 6: 667
- 3d Rochais C, Lisowski V, Dallemagne P, Rault S. Tetrahedron Lett. 2004; 45: 6353
- 3e Katritzky AR, Jiang JL, Steel PJ. J. Org. Chem. 1994; 59: 4551
- 3f Arcadi A, Rossi E. Tetrahedron 1998; 54: 15253
- 3g Periasamy M, Srinivas G, Bharathi P. J. Org. Chem. 1999; 64: 4204
- 3h Dieter RK, Yu HY. Org. Lett. 2000; 2: 2283
- 3i Ma HC, Jiang XZ. J. Org. Chem. 2007; 72: 8943
- 3j Deng HJ, Fang YJ, Chen GW, Liu MC, Wu HY, Chen JX. Appl. Organomet. Chem. 2012; 26: 164
- 3k Bandyopadhyay D, Mukherjee S, Banik BK. Molecules 2010; 15: 2520
- 4 Fürstner A. Angew. Chem. Int. Ed. 2000; 39: 3012
- 5 Donohoe TJ, Jones CR, Barbosa LC. A. J. Am. Chem. Soc. 2011; 133: 16418
- 6a Donohoe TJ, Orr AJ, Gosby K, Bingham M. Eur. J. Org. Chem. 2005; 1969
- 6b Donohoe TJ, Orr AJ, Bingham M. Angew. Chem. Int. Ed. 2006; 45: 2664
- 6c De Matteis V, Dufay O, Waalboer DC. J, van Delft FL, Tiebes J, Rutjes FP. J. T. Eur. J. Org. Chem. 2007; 2667
- 6d Donohoe TJ, Fishlock LP, Procopiou PA. Chem. Eur. J. 2008; 14: 5716
- 6e Donohoe TJ, Kershaw NM, Orr AJ, Wheelhouse KM. P, Fishlock LP, Lacy AR, Bingham M, Procopiou PA. Tetrahedron 2008; 64: 809
- 7a Declerck V, Ribière P, Martinez J, Lamaty F. J. Org. Chem. 2004; 69: 8372
- 7b Chachignon H, Scalacci N, Petricci E, Castagnolo D. J. Org. Chem. 2015; 80: 5287
- 8a Evans P, Grigg R, Monteith M. Tetrahedron Lett. 1999; 40: 5247
- 8b Yang C, Murray WV, Wilson LJ. Tetrahedron Lett. 2003; 44: 1783
- 9a Dieltiens N, Stevens CV, Vos DD, Allaert B, Drozdzak R, Verpoort F. Tetrahedron Lett. 2004; 45: 8995
- 9b Sánchez I, Pujol MD. Synthesis 2006; 1823
- 9c Chen W, Wang J. Organometallics 2013; 32: 1958
- 9d Scalacci N, Black GW, Mattedi G, Brown NL, Turner NJ, Castagnolo D. ACS Catal. 2017; 7: 1295
- 10a Artico M, Silvestri R, Massa S, Loi AG, Corrias S, Piras G, Colla PL. J. Med. Chem. 1996; 39: 522
- 10b Silvestri R, Regina GL, Martino GD, Artico M, Befani O, Palumbo M, Agostinelli E, Turini P. J. Med. Chem. 2003; 46: 917
- 10c Huffman JW, Padgett LW, Isherwood ML, Wiley JL, Martin BR. Bioorg. Med. Chem. Lett. 2006; 16: 5432
- 10d Liu K, Lu H, Hou L, Qi Z, Teixeira C, Barbault F, Fan B.-T, Liu SW, Jiang SB, Xie L. J. Med. Chem. 2008; 51: 7843
- 10e Watanabe T, Umezawa Y, Takahashi Y, Akamatsu Y. Bioorg. Med. Chem. Lett. 2010; 20: 5807
- 10f Ghorab MM, Ragab FA, Heiba HI, Youssef HA, El-Gazzar MG. Bioorg. Med. Chem. Lett. 2010; 20: 6316
- 11a Boger DL, Boyce CW, Labrili MA, Sehon CA, Jin Q. J. Am. Chem. Soc. 1999; 121: 54
- 11b Jacobi PA, Coutts LD, Guo JS, Hauck SI, Leung SH. J. Org. Chem. 2000; 65: 205
- 11c Fan H, Peng JN, Hamann MT, Hu JF. Chem. Rev. 2008; 108: 264
- 11d Domagala A, Jarosz T, Lapkowski M. Eur. J. Med. Chem. 2015; 100: 176
- 12 For pyrroles as functional materials, see: Domingo VM, Alemán C, Brillas E, Juliá L. J. Org. Chem. 2001; 66: 4058
- 13a Tarzia G, Duranti A, Tontini A, Spadoni G, Mor M, Rivara S, Plazzi PV, Kathuria S, Piomelli D. Bioorg. Med. Chem. 2003; 11: 3965
- 13b Dinsmore A, Billing DG, Mandy K, Michael JP, Mogano D, Patil S. Org. Lett. 2004; 6: 293
- 13c Zonta C, Fabris F, De Lucchi O. Org. Lett. 2005; 7: 1003
- 13d Ohta T, Fukuda T, Ishibashi F, Iwao M. J. Org. Chem. 2009; 74: 8143
- 13e Harada S, Morikawa T, Nishida A. Org. Lett. 2013; 15: 5314
- 13f Rodriguez RA, Pan CM, Yabe Y, Kawamata Y, Eastgate MD, Baran PS. J. Am. Chem. Soc. 2014; 136: 6908
- 13g Shin YH, Maheswara M, Hwang JY, Kang EJ. Eur. J. Org. Chem. 2014; 2305
- 13h Rajasekar S, Anbarasan P. J. Org. Chem. 2014; 79: 8428
- 14a Lautens M, Fillion E. J. Org. Chem. 1997; 62: 4418
- 14b Paulvannan K. J. Org. Chem. 2004; 69: 1207
- 14c Shibata M, Fuchigami R, Kotaka R, Namba K, Tanino K. Tetrahedron 2015; 71: 4495
- 15a Schmidt B, Krehl S, Jablowski E. Org. Biomol. Chem. 2012; 10: 5119
- 15b Keeley A, McCauley S, Evans P. Tetrahedron 2016; 72: 2552
- 16 Che CM. Pure Appl. Chem. 1995; 67: 225
- 17 So CM, Kume S, Hayashi T. J. Am. Chem. Soc. 2013; 135: 10990
- 18 Min GK, Bjerglund K, Kramer S, Gøgsig TM, Lindhardt AT, Skrydstrup T. Chem. Eur. J. 2013; 19: 17603
- 19 Do JL, Mottillo C, Tan D, Štrukil V, Friščić T. J. Am. Chem. Soc. 2015; 137: 2476
- 20 Cadierno V, Gimeno J, Nebra N. Chem. Eur. J. 2007; 13: 6590
- 21 Barbe G, Charette AB. J. Am. Chem. Soc. 2008; 130: 18
- 22 César V, Zhang Y, Kośnik W, Zieliński A, Rajkiewicz AA, Ruamps M, Bastin S, Lugan N, Lavigne G, Grela K. Chem. Eur. J. 2017; 23: 1950
- 23 Wilson MA, Filzen G, Welmaker GS. Tetrahedron Lett. 2009; 50: 4807
- 24 Taylor NJ, Emer E, Preshlock S, Schedler M, Tredwell M, Verhoog S, Mercier J, Genicot C, Gouverneur V. J. Am. Chem. Soc. 2017; 139: 8267
- 25 Shaoan XuS. A, Das S, Ogi S, Sugiyasu K, Okazaki H, Takano Y, Yasuda T, Deguchi K, Ohki S, Shimizu T, Takeuchi M. Chem. Eur. J. 2013; 19: 5824
- 26 Arrayás RG, Cabrera S, Carretero JC. Org. Lett. 2005; 7: 219
- 27 Meng GR, Szostak R, Szostak M. Org. Lett. 2017; 19: 3596
- 28 Huang PQ, Chen H. Chem. Commun. 2017; 53: 12584
- 29 Maehara T, Kanno R, Yokoshima S, Fukuyama T. Org. Lett. 2012; 14: 1946
- 30 Ekkati AR, Bates DK. Synthesis 2003; 1959
- 31 Fang WW, Deng QY, Xu MZ, Tu T. Org. Lett. 2013; 15: 3678
- 32 Kerr WJ, Lindsay DM, Owens PK, Reid M, Tuttle T, Campos S. ACS Catal. 2017; 7: 7182
For the synthesis of pyrroles without the use of RCM strategy, see:
For pyrroles as pharmaceuticals, see:
For pyrrole-type biologically active natural products, see: