Synthesis 2019; 51(19): 3709-3714
DOI: 10.1055/s-0039-1690005
paper
© Georg Thieme Verlag Stuttgart · New York

Cu(OTf)2-Catalyzed Beckmann Rearrangement of Ketones Using Hydroxylamine-O-sulfonic Acid (HOSA)

Sailu Munnuri
a   Division of Chemistry, Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
,
Saumya Verma
b   Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India   Email: jawaharlj@bbau.ac.in   Email: jatjawahar@gmail.com
,
Dinesh Chandra
b   Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India   Email: jawaharlj@bbau.ac.in   Email: jatjawahar@gmail.com
,
Raghunath Reddy Anugu
a   Division of Chemistry, Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
,
John R. Falck
a   Division of Chemistry, Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
,
Jawahar L. Jat
b   Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India   Email: jawaharlj@bbau.ac.in   Email: jatjawahar@gmail.com
› Author Affiliations
J.L.J. thanks DST-SERB (YSS/2015/000838), UGC, New Delhi for UGC-BSR Grant (No.F.30-382/2017) and BBAU, Lucknow for infrastructure. J. R. F. received financial support from the Robert A. Welch Foundation (I-0011) and USPHS NIH (HL139793).
Further Information

Publication History

Received: 04 June 2019

Accepted after revision: 27 June 2019

Publication Date:
16 July 2019 (online)


Abstract

The Beckmann rearrangement (BKR) of ketones to secondary amides often requires harsh reaction conditions that limit its practicality and scope. Herein, the Cu(OTf)2-catalyzed BKR of ketones under mild reaction conditions using hydroxylamine-O-sulfonic acid (HOSA), a commercial water soluble aminating agent, is described. This method is compatible with most functional groups and directly provides the desired amides in good to excellent yields.

Supporting Information

 
  • References

    • 1a Vinnik MI, Zarakhani NG. Russ. Chem. Soc. 1967; 36: 51
    • 1b Krow GR. Tetrahedron 1981; 37: 1283
    • 1c Gawley RE. Org. React. 1988; 35: 1
    • 1d Katritzky AR, Monteux DA, Tymoshenko DO. Org. Lett. 1999; 1: 577
    • 1e Smith MB, March J. Advance Organic Chemistry, 5th ed. Wiley; New York: 2001. 1415; and references cited therei
    • 1f Chandrasekhar S. In Comprehensive Organic Synthesis II, Vol. 7. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 770
    • 1g Holth TA. D, Hutt OE, Georg GI, Rojas CM. In Molecular Rearrangements in Organic Synthesis . Rojas CM. Wiley; New York: 2015: 111-150
    • 1h Zhang W, Yang S, Lin Q, Cheng H, Liu J. J. Org. Chem. 2019; 84: 851
    • 2a Beckmann E. Ber. Dtsch. Chem. Ges. 1886; 19: 988
    • 2b Blatt AH. Chem. Rev. 1933; 12: 215
    • 3a Luedeke VD. In Encyclopedia of Chemical Processing and Design, Vol. 6. Mcketta JJ. Marcel Dekker; New York: 1978: 72-95
    • 3b Rademacher H. In Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed., Vol. A8. Gerhartz W. Wiley; New York: 1987: 201
    • 3c Weber JN. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., Vol. 19. Kroschwitz JI. Wiley; New York: 1990: 500
    • 3d Palmer RJ. Encyclopedia of Polymer Science and Technology, 4th ed. Wiley; New York: 2001
    • 3e Wessermel K, Arpe H.-J. Industrial Organic Chemistry, 4th ed. Wiley-VCH; Weinheim: 2003: 239
    • 3f Owston NA, Parker AJ, Williams JM. J. Org. Lett. 2007; 9: 3599
    • 3g You K, Mao L, Yin D, Liu P, Luo H. Catal. Commun. 2008; 9: 1521
    • 4a The Chemistry of Amides . Zabicky J. Wiley-Interscience; New York: 1970
    • 4b The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science. Greenberg A, Breneman CM, Liebman JF. Wiley; New York: 2000
    • 4c Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
    • 4d Cupido T, Tulla-Puche J, Spengler J, Albericio F. Curr. Opin. Drug Discovery Dev. 2007; 10: 768
    • 4e Pathare SP, Jain AK. H, Akamanchi KG. RSC Adv. 2013; 3: 7697
    • 4f Rao SN, Mohana DC, Adimurthy S. RSC Adv. 2015; 5: 95313
    • 5a Humphrey JM, Chamberlin AR. Chem. Rev. 1997; 97: 2243
    • 5b Larock RC. Comprehensive Organic Transformatins, 2nd ed. Wiley-VCH; Weinheim: 1999: 1234
    • 5c Bode JW. Curr. Opin. Drug Discovery Dev. 2006; 9: 765
    • 5d Selvamurugan S, Ramachandran R, Prakash G, Viswanathamurthi P, Malecki JG, Endo A. J. Organomet. Chem. 2016; 803: 119
    • 6a Kalia J, Raines RT. Angew. Chem. Int. Ed. 2008; 47: 7523
    • 6b Jain PU, Samant SD. ChemistrySelect 2018; 3: 1967
    • 6c See also refs. 7–15, 17–19.
    • 7a Ramalingan C, Park Y.-T. J. Org. Chem. 2007; 72: 4536
    • 7b Crochet P, Cadierno V. Chem. Commun. 2015; 51: 2495
    • 7c Martinez-Asencio A, Yus M, Ramon DJ. Tetrahedron 2012; 68: 3948
  • 8 Kiely-Collins HJ, Sechi I, Brennan PE, McLaughlin MG. Chem. Commun. 2018; 54: 654
  • 9 Furuya Y, Ishihara K, Yamamoto H. J. Am. Chem. Soc. 2005; 127: 11240
  • 10 Betti C, Landini D, Maia A, Pasi M. Synlett 2008; 908
  • 11 Hashimoto M, Obora Y, Sakaguchi S, Ishii Y. J. Org. Chem. 2008; 73: 2894
  • 12 Zhu M, Cha C, Deng W.-P, Shi X.-X. Tetrahedron Lett. 2006; 47: 4861
  • 13 Pi H.-J, Dong J.-D, An N, Du W, Deng W.-P. Tetrahedron 2009; 65: 7790
  • 14 Zicmanis A, Katkevica S, Mekss P. Catal. Commun. 2009; 10: 614
  • 15 Mo X, Morgan TD. R, Ang HT, Hall DG. J. Am. Chem. Soc. 2018; 140: 5264
    • 16a Hyodo K, Hasegawa G, Oishi N, Kuroda K, Uchida K. J. Org. Chem. 2018; 83: 13080
    • 16b Mahajan S, Sharma B, Kapoor KK. Tetrahedron Lett. 2015; 56: 1915
    • 17a Wallace RG. Aldrichimica Acta 1980; 13: 3
    • 17b Erdik E, Saczewski J. Hydroxylamine-O-sulfonic AcideEROS Encyclopedia of Reagents for Organic Synthesis. Wiley; Hoboken: 2013: 1
    • 17c Ma Z, Zhou Z, Kürti L. Angew. Chem. Int. Ed. 2017; 56: 9886
    • 17d Sabir S, Kumar G, Jat JL. Org. Biomol. Chem. 2018; 16: 3314
  • 18 Olah GA, Fung AP. Synthesis 1979; 537
    • 19a Sanford JK, Blair FT, Arroya J, Sherk KW. J. Am. Chem. Soc. 1945; 67: 1941
    • 19b Freeman JP. J. Org. Chem. 1961; 26: 3507
  • 20 Du Bois J. Org. Process Res. Dev. 2011; 15: 758
  • 21 Munnuri S, Anugu RR, Falck JR. Org. Lett. 2019; 21: 1926
  • 22 Srivastava VP, Patel R, Garima, Yadav LD. S. Chem. Commun. 2010; 46: 5808
  • 23 Gao Y, Liu J, Li Z, Guo T, Xu S, Zhu H, Wei F, Chen S, Gebru H, Guo K. J. Org. Chem. 2018; 83: 2040
  • 24 Schulz L, Enders M, Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2017; 56: 4877
  • 25 Schmidt B, Wolf F. J. Org. Chem. 2017; 82: 4386
  • 26 Stuart DR, Bertrand-Laperle M, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
  • 27 Luca LD, Giacomelli G, Porcheddu A. J. Org. Chem. 2002; 67: 6272
  • 28 Mahajan PS, Humne VT, Tanpure SD, Mhaske SB. Org. Lett. 2016; 18: 3450
  • 29 Pialat A, Liegault B, Taillefer M. Org. Lett. 2013; 15: 1764
  • 30 Singh H, Sen C, Sahoo T, Ghosh SC. Eur. J. Org. Chem. 2018; 4748
  • 31 Tokuyama H, Itabashi S, Shimomura M, Sato M, Azuma H, Okano K, Sakata J, Hidetoshi T. Synlett 2018; 29: 1786
  • 32 Mudiyanselage AY, Viamajala S, Varanasi S, Yamamoto K. ACS Sustainable Chem. Eng. 2014; 2: 2831
  • 33 Aube J, Wang Y, Hammond M, Tanol M, Takusagawa F, Velde DV. J. Am. Chem. Soc. 1990; 112: 4879
  • 34 Liu Z.-J, Lu X, Wang G, Li L, Jiang W.-T, Wang Y.-D, Xiao B, Fu Y. J. Am. Chem. Soc. 2016; 138: 9714
  • 35 Steffel LR, Cashman TJ, Reutershan MH, Linton BR. J. Am. Chem. Soc. 2007; 129: 12956