Synthesis 2019; 51(24): 4601-4610
DOI: 10.1055/s-0039-1690025
paper
© Georg Thieme Verlag Stuttgart · New York

Total Synthesis of Enisorine D and its Analogues

Shashi Shashi
,
Mulla Althafh Hussain
,
F.A.K. gratefully acknowledges the Science and Engineering Research Board, Department of Science and Technology, Government of India (EMR/2017/00348) for financial support. Shashi thanks the Department of Chemistry, Indian Institute of Technology Hyderabad. M.A.H. thanks the Council of Scientific and Industrial Research (CSIR), India.
Further Information

Publication History

Received: 08 August 2019

Accepted after revision: 23 August 2019

Publication Date:
23 September 2019 (online)


Abstract

The first total synthesis of enisorine D, a natural product isolated from the marine sponge Iotrochota cf. iota, is described in 64% overall yield. The target molecule, which is an inhibitor of T3SS-dependent Yope secretion of Y. pseudotuberculosis, is achieved in seven linear steps from tyramine via simple and effective transformations that include bromination, acylation, alkylation, azidation, reduction and routine acid–amine coupling. A total of sixteen analogues are prepared by coupling with eight different cinnamic acids, two bromopyrrole carboxylic acids, five phenyl carboxylic acids and picolinic acid.

Supporting Information

 
  • References

    • 1a Blunt JW, Copp BR, Keyzers RA, Munro MH. G, Prinsep MR. Nat. Prod. Rep. 2016; 33: 382
    • 1b Blunt JW, Copp BR, Keyzers RA, Munro MH. G, Prinsep MR. Nat. Prod. Rep. 2015; 32: 116
    • 1c Blunt JW, Copp BR, Keyzers RA, Munro MH. G, Prinsep MR. Nat. Prod. Rep. 2017; 34: 235
  • 2 Genta-Jouve G, Thomas OP. In Advances in Marine Biology . Becerro MA, Uriz MJ, Maldonado M, Turon X. Academic Press; Amsterdam: 2012. Chap. 4, 183
  • 3 Naturally Occurring Organohalogen Compounds – A Comprehensive Update. In Progress in the Chemistry of Organic Natural Products, Vol. 91. Gribble GW. Springer; Wien: 2010
  • 4 McCauley EP, Lam H, Lorig-Roach N, Luu J, Lloyd C, Tenney K, Pietraszkiewicz H, Diaz C, Valeriote FA, Auerbuch V, Crews P. J. Nat. Prod. 2017; 80: 3255
  • 5 Hamann MT, Scheuer PJ. J. Org. Chem. 1993; 58: 6565
  • 6 Gunasekera SP, Cross SS. J. Nat. Prod. 1992; 55: 509
  • 7 Xynas R, Capon RJ. Aust. J. Chem. 1989; 42: 1427
  • 8 Longeon A, Guyot M, Vacelet J. Experientia 1990; 46: 548
  • 9 Tarazona G, Santamaria G, Cruz PG, Fernandez R, Perez M, Martinez-Leal JF, Rodriguez J, Jimenez C, Cuevas C. ACS Omega 2017; 2: 3494
    • 10a Costantino V, Fattorusso E, Mangoni A. J. Nat. Prod. 1994; 57: 1552
    • 10b Thompson MN, Gallimore WA. World J. Org. Chem. 2016; 4: 13
    • 10c Marquez DM, Marquez ME, Martinez A, Thomas OP. Lat. Am. J. Pharm. 2011; 30: 392
  • 11 Wu W.-J, Wu Y, Liu B. Tetrahedron 2017; 73: 1265
  • 12 Burch P, Chicca A, Gertsch J, Gademann K. ACS Med. Chem. Lett. 2014; 5: 172
  • 13 Chanda BM, Sulake RS. Tetrahedron Lett. 2005; 46: 6461
  • 14 Aubele DL, Floreancig PE. Org Lett. 2002; 4: 3443
  • 15 Maury J, Feray L, Bertrand MP, Kapat A, Renaud P. Tetrahedron 2012; 68: 9606
  • 16 Omar-Amrani R, Schneider R, Fort Y. Synthesis 2004; 2527
  • 17 Khan FA, Ahmad S. J. Org. Chem. 2012; 77: 2389
  • 18 Junek R, Kverka M, Jandera A, Panajotova V, Satinsky D, Machacek M, Kuchar M. Eur. J. Med. Chem. 2009; 44: 332
  • 19 Khan FA, Ahmad S, Kodipelli N, Shivange G, Anindya R. Org. Biomol. Chem. 2014; 12: 3847
  • 20 Wang M.-Z, Xu H, Liu T.-W, Feng Q, Yu S.-J, Wang S.-H, Li Z.-M. Eur. J. Med. Chem. 2011; 46: 1463