Subscribe to RSS
DOI: 10.1055/s-0039-1690034
Photochemical Deracemization of Chiral Sulfoxides Catalyzed by a Hydrogen-Bonding Xanthone Sensitizer
This project was supported by the Deutsche Forschungsgemeinschaft (Ba 1372-24/1) and by the TUM Graduate School.Publication History
Received: 18 October 2019
Accepted: 21 October 2019
Publication Date:
04 November 2019 (online)
In memory of Dieter Enders
Abstract
Several chiral sulfoxides with a lactam hydrogen-bonding site were prepared and their photochemical behavior was studied in the presence of xanthone and thioxanthone sensitizers. While acyclic sulfoxides showed only decomposition, chiral benzothiazinone-1-oxides with a stereogenic sulfur atom underwent a stereomutation upon irradiation at λ = 366 nm in the presence of catalytic quantities of a xanthone sensitizer. A chiral xanthone with a 1,5,7-trimethyl-3-azabicyclo-[3.3.1]nonan-2-one backbone was employed in catalytic quantities (5 mol%) to achieve a deracemization reaction of racemic benzothiazinone-1-oxides in acetonitrile solution. Five substrates could be successfully deracemized in good yields and with up to 55% ee.
Key words
deracemization - enantioselective synthesis - homogeneous catalysis - photochemistry - sensitization - sulfoxidesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690034.
- Supporting Information
Primary Data
- for this article are available online at https://doi.org/10.1055/s-0039-1690034 and can be cited using the following DOI: 10.4125/pd0109th.
- Primary Data
-
References
- 1a Han J, Soloshonok VA, Klika KD, Drabowicz J, Wzorek A. Chem. Soc. Rev. 2018; 47: 1307
- 1b Fernández I, Khiar N. Chem. Rev. 2003; 103: 3651
- 2 Pilbrant Å, Cederberg C. Scand. J. Gastroenterol. 1985; 20: 113
- 3 Shen TY. In The Search for Anti-Inflammatory Drugs . Merluzzi VJ. Adams J. Birkhäuser; Boston: 1995: 105-128
- 4 Persellin RH, Schmid FR. JAMA 1961; 175: 971
- 5a Bentley R. Chem. Soc. Rev. 2005; 34: 609
- 5b Olbe L, Carlsson E, Lindberg P. Nat. Rev. Drug Discov. 2003; 2: 132
- 6a O’Mahony GE, Ford A, Maguire AR. J. Sulfur Chem. 2013; 34: 301
- 6b Wojaczyńska E, Wojaczyński J. Chem. Rev. 2010; 110: 4303
- 6c Legros J, Dehli JR, Bolm C. Adv. Synth. Catal. 2005; 347: 19
- 6d Kagan HB, Diter P. In Organosulfur Chemistry, Vol. 2. Page P. Academic Press; San Diego: 1998: 1-39
- 7 Balavoine G, Juge S, Kagan HB. Tetrahedron Lett. 1973; 14: 4159
- 8a Mislow K, Axelrod M, Rayner DR, Gotthardt H, Coyne LM, Hammond GS. J. Am. Chem. Soc. 1965; 87: 4958
- 8b Archer RA, DeMarco PV. J. Am. Chem. Soc. 1969; 91: 1530
- 8c Kishi M, Komeno T. Tetrahedron Lett. 1971; 12: 2641
- 8d Ganter C, Moser J.-F. Helv. Chim. Acta 1971; 54: 2228
- 9 Review: Jenks WS, Gregory DD, Guo Y, Lee W, Tetzlaff T. In Organic Photochemistry . Ramamurthy V. Schanze KS. Dekker; New York: 1997: 1-56
- 10 Vos BW, Jenks WS. J. Am. Chem. Soc. 2002; 124: 2544
- 11 Kropp PJ, Fryxell GE, Tubergen MW, Hager MW, Harris GD. Jr, McDermott TP. Jr, Tornero-Velez R. J. Am. Chem. Soc. 1991; 113: 7300
- 12a Guo Y, Jenks WS. J. Org. Chem. 1997; 62: 857
- 12b Tsurutani Y, Machida S, Horie K, Yukio K, Nakano H, Hirao K. J. Photochem. Photobiol., A 1999; 122: 161
- 12c Lee W, Jenks WS. J. Org. Chem. 2001; 66: 474
- 12d Di Stefano S, Mazzonna M, Bodo E, Mandolini L, Lanzalunga O. Org. Lett. 2011; 13: 142
- 13 Jenks WS, Lee W, Shutters D. J. Phys. Chem. 1994; 98: 2282
- 14a Schultz AG, Schlessinger RH. J. Chem. Soc. D 1970; 1294
- 14b Guo Y, Jenks WS. J. Org. Chem. 1995; 60: 5480
- 14c Aurisicchio C, Baciocchi E, Gerini MF, Lanzalunga O. Org. Lett. 2007; 9: 1939
- 15 Müller C, Bauer A, Bach T. Angew. Chem. Int. Ed. 2009; 48: 6640
- 16 Alonso R, Bach T. Angew. Chem. Int. Ed. 2014; 53: 4368
- 17 Burg F, Bach T. J. Org. Chem. 2019; 84: 8815
- 18 Hölzl-Hobmeier A, Bauer A, Silva AV, Huber SM, Bannwarth C, Bach T. Nature 2018; 564: 240
- 19 Tröster A, Bauer A, Jandl C, Bach T. Angew. Chem. Int. Ed. 2019; 58: 3538
- 20 Murov SL, Carmichael I, Hug GL. Handbook of Photochemistry, 2nd ed. Dekker; New York: 1993: 82
- 21 Lin Z.-P, Aue WA. Spectrochim. Acta, Part A 1999; 56: 111
- 22a Voss F, Herdtweck E, Bach T. Chem. Commun. 2011; 47: 2137
- 22b Voss F. Ph.D. Thesis. TU München; Germany: 2010
- 23 Rafferty P, Calderwood D, Arnold LD, Gonzalez Pascual B, Ortego Matinez JL, Perez de Vega MJ, Fernandez IF. (BASF) Patent WO 0075139 A2, 2000
- 24 Pinto DJ. P, Quan ML, Smith LM, Orwat MJ, Gilligan PJ. (Bristol-Myers Squibb) WO 2008/157162 A1, 2008
- 25 Pownall HJ, Mantulin WM. Molec. Phys. 1976; 31: 1393
- 26 Iyer A, Clay A, Jockusch S, Sivaguru J. J. Phys. Org. Chem. 2017; 30: e3738
- 27 Munst R, Villnow T, Ziegenbein CT, Gilch P, Marian C, Rai-Constapel V. Phys. Chem. Chem. Phys. 2016; 18: 6637; and references cited therein
- 28 Wagner P, Park B.-S. Org. Photochem. 1991; 11: 227
- 29a Dexter DL. J. Chem. Phys. 1953; 21: 836
- 29b Turro NJ, Ramamurthy V, Scaiano J. Modern Molecular Photochemistry of Organic Molecules . University Science Books; Sausalito: 2010: 411-413
- 30 Fuller AL, Aitken RA, Ryan BM, Slawin AM. Z, Woollins JD. J. Chem. Crystallogr. 2009; 39: 407
- 31 For another recently reported deracemization, see: Shin NY, Ryss JM, Zhang X, Miller SJ, Knowles RR. Science 2019; 366: 364
- 32 Huang W.-S, Xu R, Dodd R, Shakespeare WC. Tetrahedron Lett. 2013; 54: 5214
Reviews:
Reviews on enantioselective sulfoxidation: