Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(03): 378-392
DOI: 10.1055/s-0039-1690036
DOI: 10.1055/s-0039-1690036
feature
Diverse One-Pot Electrophilic Trapping Reactions of 2-Quinolylzincates with Acyl Chlorides and Allyl Iodide
This work was supported by a research grant from Seoul Women’s University (2019).Further Information
Publication History
Received: 02 September 2019
Accepted after revision: 09 November 2019
Publication Date:
21 November 2019 (online)
Abstract
The tandem acylation reactions of 2-quinolylzincates under one-pot reaction conditions facilitated the formation of biologically active (Z)-3-alkylidenephthalides and multifunctionalized quinoline derivatives at specific positions. The reactions of these zincates with allyl iodide produced three different types of temperature- and alkyl-ligand-dependent C-2 homologated quinolines. The reaction mechanisms for the formation of the presented products from 2-quinolylzincates are also proposed in detail.
Key words
2-quinolylzincate - electrophilic trapping reaction - acylation - multifunctionalization - homologation - isomerizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690036.
- Supporting Information
-
References
- 1a Chung PY, Bian ZX, Pun HY, Chan D, Chan AS. C, Chui CH, Tang JC. O, Lam KH. Future Med. Chem. 2015; 7: 947
- 1b Kumar S, Bawa S, Gupta H. Mini-Rev. Med. Chem. 2009; 9: 1648
- 2a Jain S, Chandra V, Jain PK, Pathak K, Pathak D, Vaidya A. Arabian J. Chem. 2016;
- 2b Shang XF, Morris-Natschke SL, Liu YQ, Guo X, Xu XS, Goto M, Li JC, Yang GZ, Lee KH. Med. Res. Rev. 2018; 38: 775
- 2c Shang XF, Morris-Natschke SL, Yang GZ, Liu YQ, Guo X, Xu XS, Goto M, Li JC, Zhang JY, Lee KH. Med. Res. Rev. 2018; 38: 1614
- 3 Jeganmohan M, Knochel P. Angew. Chem. Int. Ed. 2010; 49: 8520
- 4a Jaric M, Haag BA, Unsinn A, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2010; 49: 5451
- 4b Manolikakes SM. M, Karaghiosoff JK, Knochel P. Chem. Commun. 2013; 49: 2124
- 5 Jeong HJ, Chae S, Jeong K, Namgoong SK. Eur. J. Org. Chem. 2018; 2018: 6343
- 6 Clegg W, Conway B, Hevia E, McCall MD, Russo L, Mulvey RE. J. Am. Chem. Soc. 2009; 131: 2375
- 7 Boudet N, Sase S, Sinha P, Liu CY, Krasovskiy A, Knochel P. J. Am. Chem. Soc. 2007; 129: 12358
- 8 Zawadiak J, Mrzyczek M. Spectrochim. Acta, Part A 2010; 75: 925
- 9 Bellina F, Ciucci D, Vergamini P, Rossi R. Tetrahedron 2000; 56: 2533
- 10a Lee SY, Kim MJ, Yim DS, Chi HJ, Kim HS. Saengyak Hakhoechi 1990; 21: 69
- 10b Fukuyama Y, Fuzen O, Sensuke K, Yoshio O. JPS6107276, 1986 ; Chem. Abstr. 1986, 105, 85185y
- 10c Kimura M, Harada M, Sekida S, Yuda M. JPH01207233, 1989 ; Chem. Abstr. 1989, 111, 239574n
- 11 Yang H, Hu GY, Chen J, Wang Y, Wang ZH. Bioorg. Med. Chem. Lett. 2007; 17: 5210
- 12 Xiong MJ, Li ZH. Curr. Org. Chem. 2007; 11: 833
- 13a Kanazawa C, Terada M. Tetrahedron Lett. 2007; 48: 933
- 13b Park JH, Bhilare SV, Youn SW. Org. Lett. 2011; 13: 2228
- 13c Marchal E, Uriac P, Legouin B, Toupet L, Weghe PV. D. Tetrahedron 2007; 63: 9979
- 13d Larock RC, Hightower TR. J. Org. Chem. 1993; 58: 5298
- 14 Rambabu D, Kumar GP, Kumar BD, Kapavarapu R, Basaveswara Rao MV, Pal M. Tetrahedron Lett. 2013; 54: 2989
- 15 Xinhua H, Fengtian X. Tetrahedron Lett. 2014; 55: 1956
- 16a Baldwin JE, Lusch MJ. Tetrahedron 1982; 38: 2939
- 16b Deslongchamps P. Stereoelectronic Effects in Organic Chemistry. Pergamon; Oxford: 1983
- 17a Seo HJ, Namgoong SK. Tetrahedron Lett. 2012; 53: 3594
- 17b Seo HJ, Yoon SJ, Jang SH, Namgoong SK. Tetrahedron Lett. 2011; 52: 3747
- 18 Dokalik A, Kalchhauser H, Mikenda W, Schweng G. Magn. Reson. Chem. 1999; 37: 895
- 19a Yadav JS, Subba Reddy BV, Gupta MK, Prabhakar A, Jagadeesh B. Chem. Commun. 2004; 2124
- 19b Jean-Gerard L, Pauvert M, Collet S, Guingant A, Evain M. Tetrahedron 2007; 63: 11250
- 20 Gibson H, Guilani B. J. Org. Chem. 1990; 55: 4226
- 21 Boudet N, Lachs JR, Knochel P. Org. Lett. 2007; 9: 5525
- 22 Wakabayashi S, Kubo Y, Takeda T, Uenishi JI, Oae S. Bull. Chem. Soc. Jpn. 1989; 62: 2338
- 23a Macdonald T, Narayanan BA, O’Dell DE. J. Org. Chem. 1981; 46: 1504
- 23b Wenkert E, Bakuzis P, Dynak JN, Swindell CS. Synth. Commun. 1979; 9: 11
- 24 Fu S, Wang L, Dong H, Yu J, Xu L, Xiao J. Tetrahedron Lett. 2016; 57: 4533
- 25 Gilman H, Eisch J, Soddy T. J. Am. Chem. Soc. 1959; 81: 4000
- 26 Kotsuki H, Shimanouchi T, Ohshima R, Fujiwara S. Tetrahedron 1998; 54: 2709
- 27 Bai X, Zeng G, Shao T, Jiang Z. Angew. Chem. Int. Ed. 2017; 56: 3684
- 28 Zhang L, Chen Z, Li H, Yin W, Xu J, Miao M, Ren H. Synth. Commun. 2017; 47: 1668
- 29a Farmer JL, Hunter HN, Organ MG. J. Am. Chem. Soc. 2012; 134: 17470
- 29b Yang Y, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 10642
- 30 Kondo Y, Morey JV, Morgan JC, Naka H, Nobuto D, Raithby PR, Uchiyama M, Wheatley AE. H. J. Am. Chem. Soc. 2007; 129: 12734
- 31a Lorthiois E, Meyer C. In Patai’s Chemistry of Functional Groups . John Wiley & Sons, Ltd; Cichester, UK: 2009
- 31b Lehmkuhl H, Olbrysch O. Justus Liebigs Ann. Chem. 1975; 1162
- 31c Nakamura M, Inoue T, Sato A, Nakamura E. Org. Lett. 2000; 2: 2193
- 31d Nakamura M, Hara K, Hatakeyama T, Nakamura E. Org. Lett. 2001; 3: 3137
- 31e Nakamura M, Yoshikai N, Nakamura E. Chem. Lett. 2002; 146
- 32a Resa I, Carmona E, Gutierrez-Puebla E, Monge A. Science 2004; 305: 1136
- 32b Del Rio D, Galindo A, Resa I, Carmona E. Angew. Chem. Int. Ed. 2005; 44: 1244
- 32c Zhu Z, Wright RJ, Olmstead MM, Rivard E, Brynda M, Power PP. Angew. Chem. Int. Ed. 2006; 45: 5807
- 32d Wang Y, Quillian B, Wei P, Wang H, Yang XJ, Xie Y, King RB, Schleyer P. vR, Schaefer HF. III, Robinson GH. J. Am. Chem. Soc. 2005; 127: 11944
- 32e Parkin G. Science 2004; 305: 1117
- 32f Grirrane A, Resa I, Rodriguez A, Carmona E, Alvarez E, Gutierrez-Puebla E, Monge A, Galindo A, Del Rio D, Andersen RA. J. Am. Chem. Soc. 2007; 129: 693
- 32g Zhu Z, Brynda M, Wright RJ, Fischer RC, Merrill WA, Rivard E, Wolf R, Fettinger JC, Olmstead MM, Power PP. J. Am. Chem. Soc. 2007; 129: 10847