Synthesis 2020; 52(06): 781-795
DOI: 10.1055/s-0039-1690044
review
© Georg Thieme Verlag Stuttgart · New York

Recent Developments in Highly Stereoselective Michael Addition Reactions Catalyzed by Metal Complexes

Department of Organic Chemistry, Samara State Technical University, Samara 443100, Molodogwardeyskaya st. 244, Russian Federation   Email: reznikov.an@samgtu.ru
,
Yuri N. Klimochkin
› Author Affiliations
We gratefully acknowledge the financial support of the Russian Science Foundation (grant No. 18-13-00447).
Further Information

Publication History

Received: 05 November 2019

Accepted after revision: 09 December 2019

Publication Date:
03 January 2020 (online)


Abstract

Achieving high enantioselectivity and diastereoselectivity simultaneously­ is a rather challenging task for asymmetric catalytic synthesis­. Thanks to the rapid development of asymmetric transition-metal catalysis, significant progress has been made during recent years in achieving highly enantio- and diastereoselective conjugate addition reactions with a diverse combination of Michael donors and acceptors. This short review surveys the advances in transition-metal-catalyzed asymmetric diastereoselective Michael addition including diastereodivergent catalysis developed between 2015 and 2019. The review is divided into multiple parts according to the type of nucleophiles involved in the reaction.

1 Introduction

2 Addition of Functionalized Ketones and Dicarbonyl Compounds

3 Addition of Aldimino Esters and Their Cyclic Analogues

4 Addition of Indolin-2-ones

5 Vinylogous Michael Reactions

6 Other Michael Donors

7 Cascade Reactions Initiated by Michael Addition

8 Conclusion

 
  • References

  • 1 Hui C, Pu F, Xu J. Chem. Eur. J. 2017; 23: 4023
  • 2 Brunner H, Hammer B. Angew. Chem. Int. Ed. 1984; 23: 312
  • 3 Zheng K, Liu X, Feng X. Chem. Rev. 2018; 118: 7586
    • 4a Beletskaya IP, Nájera C, Yus M. Chem. Rev. 2018; 118: 5080
    • 4b Lin L, Feng X. Chem. Eur. J. 2017; 23: 6464
    • 4c Bihani M, Zhao JC.-G. Adv. Synth. Catal. 2017; 359: 534
  • 5 Gao Y.-Y, Hua Y.-Z, Wang M.-C. Adv. Synth. Catal. 2018; 360: 80
  • 6 Wang Y, Wang K, Cao W, Liu X, Feng X. Org. Lett. 2019; 21: 6063
  • 7 Reznikov AN, Sibiryakova AE, Baimuratov MR, Golovin EV, Rybakov VB, Klimochkin YN. Beilstein J. Org. Chem. 2019; 15: 1289
  • 8 Reznikov AN, Sybiryakova AE, Rybakov VB, Klimochkin YuN. Tetrahedron: Asymmetry 2015; 26: 1050
  • 9 Sung HJ, Mang JY, Kim DY. J. Fluorine Chem. 2015; 178: 40
  • 10 Kwon SJ, Suh CW, Kim SM, Kim DY. Bull. Korean Chem. Soc. 2015; 36: 1947
  • 11 Yang D, Li D, Wang L, Zhao D, Wang R. J. Org. Chem. 2015; 80: 4336
  • 12 Chen G, Liang G, Wang Y, Deng P, Zhou H. Org. Biomol. Chem. 2018; 16: 3841
  • 13 Arai T, Iimori Y, Shirasugi M, Shinohara R, Takagi Y, Suzuki T, Ma J, Kuwano S, Masu H. Adv. Synth. Catal. 2019; 361: 3704
  • 14 Cichowicz NR, Kaplan W, Khomutnik I, Bhattarai B, Sun Z, Nagorny P. J. Am. Chem. Soc. 2015; 137: 14341
  • 15 Wang H, Wang Y, Zhang C, Jiang Y, Chu M, Li Z, Du X, Xu D. Org. Biomol. Chem. 2017; 15: 4191
  • 16 Wang C, Chen L.-A, Huo H, Shen X, Harms K, Gong L, Meggers E. Chem. Sci. 2015; 6: 1094
  • 17 Yao Q, Liao Y, Lin L, Lin X, Ji J, Liu X, Feng X. Angew. Chem. Int. Ed. 2016; 55: 1859
    • 18a Espinosa M, Blay G, Cardona L, Merino P, Pedro JR. Org. Chem. Front. 2019; 6: 2907
    • 18b Espinosa M, Blay G, Cardona L, Fernández I, Muñoz MC. J. Coord. Chem. 2018; 71: 864
  • 19 Espinosa M, Herrera J, Blay G, Cardona L, Muñoz MC, Pedro JR. Org. Biomol. Chem. 2017; 15: 3849
  • 20 Chen X, Zhou H, Huang H. Chin. J. Catal. 2015; 36: 57
  • 21 Bai X.-F, Li L, Xu Z, Zheng Z.-J, Xia C.-G, Cui Y.-M, Xu L.-W. Chem. Eur. J. 2016; 22: 10399
  • 22 Liu B, Zhang Z.-M, Xu B, Xu S, Wu H.-H, Liu Y, Zhang J. Org. Chem. Front. 2017; 4: 1772
  • 23 Li J.-Y, Kim HY, Oh K. Org. Lett. 2015; 17: 1288
  • 24 Kimura M, Tada A, Tokoro Y, Fukuzawa S. Tetrahedron Lett. 2015; 56: 2251
    • 25a Koizumi A, Kimura M, Arai Y, Tokoro Y, Fukuzawa S.-i. J. Org. Chem. 2015; 80: 10883
    • 25b Li C.-Y, Yang W.-L, Luo X, Deng W.-P. Chem. Eur. J. 2015; 21: 19048
  • 26 Koizumi A, Harada M, Haraguchi R, Fukuzawa S.-i. J. Org. Chem. 2017; 82: 8927
  • 27 Xue Z.-Y, Song Z.-M, Wang C.-J. Org. Biomol. Chem. 2015; 13: 5460
  • 28 Kato S, Suzuki Y, Suzuki K, Haraguchi R, Fukuzawa S.-i. J. Org. Chem. 2018; 83: 13965
    • 29a Koizumi A, Matsuda Y, Haraguchi R, Fukuzawa S.-i. Tetrahedron: Asymmetry 2017; 28: 428
    • 29b Koizumi A, Kimura M, Arai Y, Tokoro Y, Fukuzawa S.-i. J. Org. Chem. 2015; 80: 10883
  • 30 Matsuda Y, Koizumi A, Haraguchi R, Fukuzawa S.-i. J. Org. Chem. 2016; 81: 7939
  • 31 Mechler M, Peters R. Angew. Chem. Int. Ed. 2015; 54: 10303
  • 32 Wang Z, Kang T, Yao Q, Ji J, Liu X, Lin L, Feng X. Chem. Eur. J. 2015; 21: 7709
  • 33 Zhang J, Zhang Y, Lin L, Yao Q, Liu X, Feng X. Chem. Commun. 2015; 51: 10554
  • 34 Rout S, Das A, Singh VK. Chem. Commun. 2017; 53: 5143
  • 35 Steinkamp A.-D, Frings M, Thomé I, Schiffers I, Bolm C. Chem. Eur. J. 2015; 21: 7705
  • 36 Oyama H, Orimoto K, Niwa T, Nakada M. Tetrahedron: Asymmetry 2015; 26: 262
  • 37 Xiao X, Mei H, Chen Q, Zhao X, Lin L, Liu X, Feng X. Chem. Commun. 2015; 51: 580
  • 38 Li L, Zhang S, Hu Y, Li Y, Li C, Zha Z, Wang Z. Chem. Eur. J. 2015; 21: 12885
  • 39 Song L, Gong L, Meggers E. Chem. Commun. 2016; 52: 7699
    • 40a Ge S, Kang T, Lin L, Zhang X, Zhao P, Liu X, Feng X. Chem. Commun. 2017; 53: 11759
    • 40b Wang L, Yang D, Li D, Wang P, Wang K, Wang J, Jiang X, Wang R. Chem. Eur. J. 2016; 22: 8483
    • 40c Yang D, Wang L, Kai M, Li D, Yao X, Wang R. Angew. Chem. Int. Ed. 2015; 54: 9523
    • 41a Reznikov AN, Sidnin EA, Klimochkin YuN. Russ. J. Org. Chem. 2013; 49: 1600
    • 41b Sidnin EA, Reznikov AN, Shiryayev VA, Klimochkin YuN. Russ. J. Org. Chem. 2014; 50: 1579
  • 42 Göricke F, Schneider C. Angew. Chem. Int. Ed. 2018; 57: 14736
  • 43 Sun G.-J, Gong J, Kang Q. J. Org. Chem. 2017; 82: 796
  • 44 Kuang Y, Shen B, Dai L, Yao Q, Liu X, Lin L, Feng X. Chem. Sci. 2018; 9: 688
  • 45 Lee J, Wang S, Callahan M, Nagorny P. Org. Lett. 2018; 20: 2067
  • 46 Hua Y.-Z, Liu M.-M, Huang P.-J, Song X, Wang M.-C, Chang J.-B. Chem. Eur. J. 2015; 21: 11994
  • 47 Liu M.-M, Yang X.-C, Hua Y.-Z, Chang J.-B, Wang M.-C. Org. Lett. 2019; 21: 7089
  • 48 Chen L, Yang W.-L, Shen J.-H, Deng W.-P. Adv. Synth. Catal. 2019; 361: 4611
  • 49 He W, Hu J, Wang P, Chen L, Ji K, Yang S, Li Y, Xie Z, Xie W. Angew. Chem. Int. Ed. 2018; 57: 3806
  • 50 Wang Q, Li S, Hou C.-J, Chu T.-T, Hu X.-P. Tetrahedron 2019; 75: 3943
  • 51 Tao B.-K, Yang H, Hua Y.-Z, Wang M.-C. Org. Biomol. Chem. 2019; 17: 4301
  • 52 Zhang Y, Liao Y, Liu X, Yao Q, Zhou Y, Lin L, Feng X. Chem. Eur. J. 2016; 22: 15119
  • 53 Xu J, Hu L, Hu H, Ge S, Liu X, Feng X. Org. Lett. 2019; 21: 1632
  • 54 Mei H, Lin L, Shen B, Liu X, Feng X. Org. Chem. Front. 2018; 5: 2505
  • 55 Zhao X, Liu X, Mei H, Guo J, Lin L, Feng X. Angew. Chem. Int. Ed. 2015; 54: 4032
  • 56 Zhao X, Liu X, Xiong Q, Mei H, Ma B, Lin L, Feng X. Chem. Commun. 2015; 51: 16076