Subscribe to RSS
DOI: 10.1055/s-0039-1690055
Thioesterification and Selenoesterification of Amides via Selective N–C Cleavage at Room Temperature: N–C(O) to S/Se–C(O) Interconversion
Rutgers University and the National Science Foundation (NSF, CAREER CHE-1650766) are gratefully acknowledged for support.Publication History
Received: 31 December 2019
Accepted after revision: 26 January 2020
Publication Date:
25 February 2020 (online)
Abstract
The direct nucleophilic addition to amides represents an attractive methodology in organic synthesis that tackles amidic resonance by ground-state destabilization. This approach has been recently accomplished with carbon, nitrogen and oxygen nucleophiles. Herein, we report an exceedingly mild method for the direct thioesterification and selenoesterification of amides by selective N–C(O) bond cleavage in the absence of transition metals. Acyclic amides undergo N–C(O) to S/Se–C(O) interconversion to give the corresponding thioesters and selenoesters in excellent yields at room temperature via a tetrahedral intermediate pathway (cf. an acyl metal).
Key words
amides - N–C activation - metal-free - thioesters - selenoesters - thioesterification - selenoesterification - tetrahedral intermediatesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690055.
- Supporting Information
-
References
- 1a Greenberg A, Breneman CM, Liebman JF. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science. Wiley-VCH; Weinheim: 2003
- 1b Pattabiraman VR, Bode JW. Nature 2011; 480: 471
- 1c Ruider S, Maulide N. Angew. Chem. Int. Ed. 2015; 54: 13856
- 2a Larock RC. Comprehensive Organic Transformations . John Wiley & Sons; New York: 1999
- 2b Zabicky J. The Chemistry of Amides . Interscience; New York: 1970
- 3a Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
- 3b Kaspar AA, Reichert JM. Drug Discov. Today 2013; 18: 807
- 3c Marchildon K. Macromol. React. Eng. 2011; 5: 22
- 4a Shi S, Nolan SP, Szostak M. Acc. Chem. Res. 2018; 51: 2589
- 4b Liu C, Szostak M. Org. Biomol. Chem. 2018; 16: 7998
- 4c Takise R, Muto K, Yamaguchi J. Chem. Soc. Rev. 2017; 46: 5864
- 4d Dander JE, Garg NK. ACS Catal. 2017; 7: 1413
- 4e Liu C, Szostak M. Chem. Eur. J. 2017; 23: 7157
- 4f Bourne-Branchu Y, Gosmini C, Danoun G. Chem. Eur. J. 2019; 25: 2663
- 4g Chaudhari MB, Gnanaprakasam B. Chem. Asian J. 2019; 14: 76
- 5a Szostak R, Shi S, Meng G, Lalancette R, Szostak M. J. Org. Chem. 2016; 81: 8091
- 5b Meng G, Shi S, Lalancette R, Szostak R, Szostak M. J. Am. Chem. Soc. 2018; 140: 727
- 5c Liu C, Shi S, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org. Lett. 2018; 20: 7771 ; and references cited therein
- 6a Hie L, Nathel NF. F, Shah TK, Baker EL, Hong X, Yang YF, Liu P, Houk KN, Garg NK. Nature 2015; 524: 79
- 6b Meng G, Szostak M. Org. Lett. 2015; 17: 4364
- 6c Meng G, Shi S, Szostak M. ACS Catal. 2016; 6: 7335
- 6d Meng G, Lei P, Szostak M. Org. Lett. 2017; 19: 2158
- 6e Amani J, Alam R, Badir S, Molander GA. Org. Lett. 2017; 19: 2426
- 6f Ni S, Zhang W, Mei H, Han J, Pan Y. Org. Lett. 2017; 19: 2536
- 6g Buchspies J, Szostak M. Catalysts 2019; 9: 53 ; and references cited therein
- 7a Pace V, Holzer W, Meng G, Shi S, Lalancette R, Szostak R, Szostak M. Chem. Eur. J. 2016; 22: 14494
- 7b Szostak R, Szostak M. Molecules 2019; 24: 274 ; and references cited therein
- 8a Rh: Meng G, Szostak M. ACS Catal. 2017; 7: 7251
- 8b Cr: Chen C, Liu P, Luo M, Zeng X. ACS Catal. 2018; 8: 5864
- 8c Co: Bourne-Branchu Y, Gosmini C, Danoun G. Chem. Eur. J. 2017; 23: 10043
- 8d Dorval C, Dubois E, Bourne-Branchu Y, Gosmini C, Danoun G. Adv. Synth. Catal. 2019; 361: 1777
- 9 For a recent review on the activation of amides by tetrahedral intermediates, see: Li G, Szostak M. Chem. Rec. 2020; 20
- 10a Li G, Szostak M. Chem. Eur. J. 2020; 26: 611
- 10b Li G, Ji CL, Hong X, Szostak M. J. Am. Chem. Soc. 2019; 141: 11161
- 10c Li G, Szostak M. Nat. Commun. 2018; 9: 4165
- 10d Rahman MM, Li G, Szostak M. J. Org. Chem. 2019; 84: 12091
- 10e Guo W, Huang J, Wu H, Liu T, Luo Z, Jian J, Zeng Z. Org. Chem. Front. 2018; 5: 2950
- 10f Ghosh T, Jana S, Dash J. Org. Lett. 2019; 21: 669
- 10g Li G, Lei P, Szostak M. Org. Lett. 2018; 20: 5622
- 10h Wu H, Guo W, Stelck D, Li Y, Liu C, Zeng Z. Chem. Eur. J. 2018; 24: 3444
- 10i Ye D, Liu Z, Chen H, Sessler JL, Lei C. Org. Lett. 2019; 21: 6888
- 11a Hirschbeck V, Gehrtz PH, Fleischer I. Chem. Eur. J. 2018; 24: 7092
- 11b For the classic Liebeskind–Srogl synthesis, see: Liebeskind L, Srogl J. J. Am. Chem. Soc. 2000; 122: 11260
- 11c Hirschbeck V, Böldl M, Gehrtz PH, Fleischer I. Org. Lett. 2019; 21: 2578
- 11d Gehrtz PH, Kathe P, Fleischer I. Chem. Eur. J. 2018; 24: 8774
- 11e Burhardt MN, Taaning RH, Skrydstrup T. Org. Lett. 2013; 15: 948
- 11f Burhardt MN, Ahlburg A, Skrydstrup T. J. Org. Chem. 2014; 79: 11830
- 11g Zhang Y, Ji P, Hu W, Wei Y, Huang H, Wang W. Chem. Eur. J. 2019; 25: 8225
- 11h Ishitobi K, Muto K, Yamaguchi J. ACS Catal. 2019; 9: 11685
- 12a Temperini A, Piazzolla F, Minuti L, Curini M, Siciliano C. J. Org. Chem. 2017; 82: 4588
- 12b Durek T, Alewood PF. Angew. Chem. Int. Ed. 2011; 50: 12042
- 12c Boger DL, Mathvink RJ. J. Am. Chem. Soc. 1990; 112: 4003
- 13 For decarbonylative thiolation of N-acyl-glutarimides, see: Lee SC, Liao HH, Chatupheeraphat A, Rueping M. Chem. Eur. J. 2018; 24: 3608
- 14a Liu C, Szostak M. Chem. Commun. 2018; 54: 2130
- 14b Ichiishi N, Malapit CA, Wozniak L, Sanford M. Org. Lett. 2018; 20: 44
- 14c Ishitobi K, Isshiki R, Asahara KK, Lim C, Muto K, Yamaguchi J. Chem. Lett. 2018; 47: 756
- 15 For a further pertinent review, see: Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
For representative reviews on N–C bond activation, see:
For representative studies on amide bond twist, see:
For representative examples of acyl coupling, see:
For leading references on ground-state destabilization, see:
For representative studies, see:
For representative studies, see: C-nucleophiles:
N-nucleophiles:
O-nucleophiles:
For a leading review on thioesters, see:
For selected recent studies, see:
For leading references on selenoesters, see:
For decarbonylative thiolation of thioesters, see: