Synlett 2019; 30(14): 1648-1655
DOI: 10.1055/s-0039-1690107
cluster
© Georg Thieme Verlag Stuttgart · New York

Photocatalytic Oxidative C–H Thiolation: Synthesis of Benzothiazoles and Sulfenylated Indoles

Andrew N. Dinh ‡
,
Ashley D. Nguyen ‡
,
Ernesto Millan Aceves
,
Samuel T. Albright
,
Mario R. Cedano
,
Diane K. Smith
,
Jeffrey L. Gustafson
This work was supported by the National Science Foundation (Grant No. Che-1664565).
Further Information

Publication History

Received: 24 April 2019

Accepted after revision: 17 June 2019

Publication Date:
27 June 2019 (online)


Both authors contributed equally

Published as part of the Cluster for Organosulfur and Organo­selenium Compounds in Catalysis

Abstract

We report studies on the photocatalytic formation of C–S bonds to form benzothiazoles via an intramolecular cyclization and sulfenylated indoles via an intermolecular reaction. Cyclic voltammetry (CV) and density functional theory studies suggest that benzothiazole formation proceeds via a mechanism that involves an electrophilic sulfur radical, while the indole sulfenylation likely proceeds via a nucleophilic sulfur radical adding into a radical cationic indole. These conditions were successfully extended to several thiobenzamides and indole substrates.

Supporting Information

 
  • References and Notes

  • 1 Dunbar KL, Scharf DH, Litomska A, Hertweck C. Chem. Rev. 2017; 117: 5521
  • 2 Johannesson P, Lindeberg G, Johansson A, Nikiforovich GV, Gogoll A, Synnergren B, Gre ML, Nyberg F, Karlen A, Hallberg A. J. Med. Chem. 2002; 45: 1767
  • 3 Kazemi M, Shiri L, Kohzadi H, Kazemi M, Shiri L, Kohzadi H. Phosphorus, Sulfur, Silicon Relat. Elem. 2015; 190: 978
  • 4 Marcantoni E, Massaccesi M, Petrini M, Bartoli G, Bellucci MC, Bosco M, Sambri L. J. Org. Chem. 2000; 65: 4553
  • 5 Vazquez-Prieto MA, Miatello RM. Mol. Aspects Med. 2010; 31: 540
  • 6 Vouillamoz J, Entenza M, Hohl P, Moreillon P. Antimicrob Agents Chemother 2004; 48: 4322
  • 7 Takimiya K, Osaka I, Mori T, Nakano M. Acc. Chem. Res. 2014; 47: 1493
  • 8 Gill R, Rawal R, Bariwal J. Arch. Pharm. Chem. Life Sci. 2015; 348: 155
  • 9 Lee C, Liu Y, Badsara SS. Chem. Asian J. 2014; 9: 706
  • 10 Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
  • 11 Vásquez-Céspedes S, Ferry A, Candish L, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 5772
  • 12 Stavber S. Molecules 2011; 16: 6432
  • 13 Schlosser KM, Krasutsky AP, Hamilton HW, Reed JE, Sexton K. Org. Lett. 2004; 6: 819
  • 14 Tudge M, Tamiya M, Savarin C, Humphrey GR. Org. Lett. 2006; 8: 565
  • 15 Gillis M, Greene L, Thompson A. Synlett 2009; 112
  • 16 Matsugi M, Murata K, Nambu H, Kita Y. Tetrahedron 2001; 42: 1077
  • 17 Nalbandian CJ, Brown ZE, Alvarez E, Gustafson JL. Org. Lett. 2018; 20: 3211
  • 18 Nalbandian CJ, Miller EM, Toenjes ST, Gustafson JL. Chem. Commun. 2017; 53: 1494
  • 19 Prier CK, Rankic DA, Macmillan DW. C. Chem. Rev. 2013; 113: 5322
  • 20 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 21 Wang C, Dixneuf P, Soule J.-F. Chem. Rev. 2018; 118: 7532
  • 22 Shaw MH, Twilton J, Macmillan DW. C. J. Org. Chem. 2016; 81: 6898
  • 23 Smith JM, Harwood SJ, Baran PS. Acc. Chem. Res. 2018; 51: 1807
  • 24 Zhang G, Liu C, Yi H, Meng Q, Bian C, Chen H, Jian J, Wu L, Lei A. J. Am. Chem. Soc. 2015; 137: 9273
  • 25 Qian X, Li S, Song J, Xu H. ACS Catal. 2017; 7: 2730
  • 26 Rahaman R, Das S, Barman P. Green Chem. 2018; 20: 141
  • 27 Guo W, Tan W, Zhao M, Tao K, Zheng L, Wu Y, Chen D, Fan X. RSC Adv. 2017; 7: 37739
  • 28 Das A, Maity M, Malcherek S, König B, Rehbein J. Beilstein J. Org. Chem. 2018; 14: 2520
  • 29 Zhang L, Hu X. Chem. Sci. 2017; 8: 7009
  • 30 Rountree KJ, Mccarthy BD, Rountree ES, Eisenhart TT, Dempsey JL. J. Chem. Educ. 2017; 95: 197
  • 31 Hua AM, Bidwell SL, Baker SI, Hratchian HP, Baxter RD. ACS Catal. 2019; 9: 3322
  • 32 Cruz CL, Nicewicz DA. ACS Catal. 2019; 9: 3926
  • 33 Morse PD, Nicewicz DA. Chem. Sci. 2015; 6: 270
  • 34 Mcmanus JB, Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 2880
  • 35 Denes F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
  • 36 General Procedure for Synthesis of Substituted BenzothiazolesIn a 10 mL scintillation vial, thioabenzamide (1.0 equiv), Ru(bpy)3Cl2 (5 mol%), Na2S2O8 (2.0 equiv), and pyridine (2.0 equiv) were added to a solution of 1:1 MeCN/H2O (25 mg/1 mL). The reaction was stirred under blue LEDs for 12 h at room temperature. The resulting solution was quenched with H2O, extracted with EtOAc, dried over Na2SO4, and concentrated in vacuo. The product was purified via FCC and prep TLC with gradient from hexanes to 8:2 Hex/EtOAc.General Procedure for the Synthesis of Sulfenylated IndolesIn a 10 mL scintillation vial, substituted indole (1.0 equiv), {Ir[dF(CF3)ppy]2(dtbpy)}PF6 photocatalyst (1 mol%), Na2S2O8 (2.0 equiv), KOH (2.0 equiv), and thiophenol (1.2 equiv) were added to a solution of 1:1 MeCN/H2O (25 mg/1 mL). The reaction was left to stir under blue LEDs for 12 h at room temperature. The resulting solution was quenched with H2O and extracted with EtOAc, dried over Na2SO4, and concentrated in vacuo. The product was purified via FCC and prep TLC (8:2 Hex/EtOAc). Melatonin substrates were purified via FCC with (2:8 Hex/EtOAc).2-(tert-Butyl)benzo[d]thiazole (1b)57% with no pyridine, 79% with pyridine, off-white solid. 1H NMR (500 MHz, CDCl3): δ = 8.00 (dt, J = 8.2, 0.9 Hz, 1 H), 7.85 (dd, J = 8.0, 0.45 Hz, 1 H), 7.44 (ddd, J = 8.3, 7.2, 1.3 Hz, 1 H), 7.34 (ddd, J = 8.2, 7.2, 1.2 Hz, 1 H), 1.53 (s, 9 H). The spectral data are in agreement with the reported literature.37 MS-APCI: m/z calcd: C11H13NS [M + H]+ 192.3; found: 192.1.2-(tert-Butyl)napthol[1,2-d]thiazole (6b)55% with no pyridine, 54% with pyridine, yellow-green solid. 1H NMR (500 MHz, CDCl3): δ = 8.82 (dt, J = 8.0, 0.8 Hz, 1 H), 7.93 (d, J = 8.1 Hz, 1 H), 7.87 (d, J = 8.7 Hz, 1 H), 7.75 (d, J = 8.7 Hz, 1 H), 7.65 (ddd, J = 8.2, 6.9, 1.3 Hz, 1 H), 7.55 (ddd, J = 8.2, 6.9, 1.3 Hz, 1 H), 1.59 (s, 9 H). 13C NMR (101 Hz, CDCl3): δ = 180.7, 149.2, 131.8, 131.2, 128.6, 127.9, 126.6, 125.7, 125.0, 124.0, 119.0, 38.4, 31.0. MS-APCI: m/z calcd for C15H15NS [M+H]+: 242.4; found: 242.1. N-{2-[5-Methoxy-2-(p-tolylthio)-1H-indol-3- yl]ethyl}acetamide (18b)68%, tan solid. 1H NMR (400 MHz, CDCl3): δ = 8.12 (s, 1 H), 7.22 (d, 8.8 Hz, 1 H), 7.02–7.06 (m, 3 H), 6.98 (d, 8.3 Hz, 2 H), 6.91 (dd, J = 8.8, 2.4 Hz, 1 H), 5.50 (s, 1 H), 3.86 (s, 3 H), 3.52 (q, J = 6.4 Hz, 2 H), 3.05 (t, J = 6.5 Hz, 2 H), 2.27 (s, 3 H), 1.78 (s, 3 H). 13C NMR (126 Hz, CDCl3): δ = 170.28, 154.36, 136.17, 133.22, 132.07, 130.04, 128.13, 127.00, 123.50, 119.64, 114.32, 111.93, 100.32, 55.87, 40.01, 24.75, 23.13, 20.89. MS-APCI: m/z calcd for C20H22N2O2S [M + H]+: 355.5; found: 355.5
  • 37 Zhang G, Liu C, Yi H, Meng Q, Bian C, Chen H, Jian JX, Wu LZ, Lei A. J. Am. Chem. Soc. 2015; 137: 9273